Вселенная пульсары. Школьная энциклопедия. Что представляют собой нейтронные звезды

Вселенная пульсары. Школьная энциклопедия. Что представляют собой нейтронные звезды

>

В центре галактики М82 можно увидеть пульсар (розовый)

Изучите пульсары и нейтронные звезды Вселенной: описание и характеристика с фото и видео, строение, вращение, плотность, состав, масса, температура, поиск.

Пульсары

Пульсары представляют собою сферические компактные объекты, размеры которых не выходят за границу большого города. Удивительно то, что при таком объеме они по массивности превосходят солнечную. Их используют для исследования экстремальных состояний материи, обнаружения планет за пределами нашей системы и измерения космических дистанций. Кроме того, они помогли найти гравитационные волны, указывающие на энергетические события, вроде столкновений сверхмассивных . Впервые обнаружены в 1967 году.

Что такое пульсар?

Если высматривать на небе пульсар, то кажется обычной мерцающей звездой, следующей по определенному ритму. На самом деле, их свет не мерцает и не пульсирует, и они не выступают звездами.

Пульсар вырабатывает два стойких узких световых луча в противоположных направлениях. Эффект мерцания создается из-за того, что они вращаются (принцип маяка). В этот момент луч попадает на Землю, а затем снова поворачивается. Почему это происходит? Дело в том, что световой луч пульсара обычно не совмещается с его осью вращения.

Если мигание создается вращением, то скорость импульсов отображает ту, с которой вращается пульсар. Всего было найдено 2000 пульсаров, большая часть их которых делает один оборот в секунду. Но есть примерно 200 объектов, умудряющихся за то же время совершать по сотне оборотов. Наиболее быстрые называют миллисекундными, потому что их количество оборотов за секунду приравнивается к 700.

Пульсары нельзя считать звездами, по крайней мере «живыми». Это скорее нейтронные звезды, формирующиеся после того, как у массивной звезды заканчивается топливо, и она разрушается. В результате создается сильный взрыв – сверхновая, а оставшийся плотный материал трансформируется в нейтронную звезду.

Диаметр пульсаров во Вселенной достигает 20-24 км, а по массе вдвое больше солнечной. Чтобы вы понимали, кусочек такого объекта размером с сахарный куб будет весить 1 миллиард тонн. То есть, у вас в руке помещается нечто весом с Эверест! Правда есть еще более плотный объект – черная дыра. Наиболее массивная достигает 2.04 солнечной массы.

Пульсары обладают сильным магнитным полем, которое от 100 миллионов до 1 квадриллиона раз сильнее земного. Чтобы нейтронная звезда начала излучать свет подобный пульсару, она должна обладать правильным соотношением напряженности магнитного поля и частоты вращения. Случается так, что луч радиоволн может не пройти через поле зрения наземного телескопа и остаться невидимым.

Радиопульсары

Астрофизик Антон Бирюков о физике нейтронных звезд, замедлении вращения и открытии гравитационных волн:

Почему пульсары вращаются?

Медлительность для пульсара – одно вращение в секунду. Наиболее быстрые разгоняются до сотен оборотов в секунду и называются миллисекундными. Процесс вращения происходит, потому что звезды, из которых они образовались, также вращались. Но, чтобы добраться до такой скорости, нужен дополнительный источник.

Исследователи полагают, что миллисекундные пульсары сформировались при помощи воровства энергии у соседа. Можно заметить наличие чужого вещества, которое увеличивает скорость вращения. И это не очень хорошо для пострадавшего компаньона, который однажды может полностью поглотиться пульсаром. Такие системы называют черными вдовами (в честь опасного вида паука).

Пульсары способны излучать свет в нескольких длинах волн (от радио до гамма-лучей). Но как они это делают? Ученые пока не могут найти точного ответа. Полагают, что за каждую длину волн отвечает отдельный механизм. Маякоподобные лучи состоят из радиоволн. Они отличаются яркостью и узостью и напоминают когерентный свет, где частицы формируют сфокусированный луч.

Чем быстрее вращение, тем слабее магнитное поле. Но скорости вращения достаточно, чтобы они излучали такие же яркие лучи, как и медленные.

Во время вращения, магнитное поле создает электрическое, которое способно привести заряженные частицы в подвижное состояние (электрический ток). Участок над поверхностью, где доминирует магнитное поле, называют магнитосферой. Здесь заряженные частицы ускоряются до невероятно высоких скоростей из-за сильного электрического поля. При каждом ускорении они излучают свет. Он отображается в оптическом и рентгеновском диапазоне.

А что с гамма-лучами? Исследования говорят о том, что их источник нужно искать в другом месте возле пульсара. И они будут напоминать веер.

Поиск пульсаров

Главным методом для поиска пульсаров в космосе остаются радиотелескопы. Они небольшие и слабые по сравнению с другими объектами, поэтому приходится сканировать все небо и постепенно в объектив попадают эти объекты. Большая часть была найдена при помощи Обсерватории Паркса в Австралии. Много новых данных можно будет получить с Антенной решетки в квадрантный километр (SKA), стартующий в 2018 году.

В 2008 году запустили телескоп GLAST, который нашел 2050 гамма-излучающих пульсаров, среди которых 93 были миллисекундными. Этот телескоп невероятно полезен, так как сканирует все небо, в то время как другие выделяют лишь небольшие участки вдоль плоскости .

Поиск различных длин волн может сталкиваться с проблемами. Дело в том, что радиоволны невероятно мощные, но могут просто не попадать в объектив телескопа. А вот гамма-излучения распространяются по больше части неба, но уступают по яркости.

Сейчас ученые знают о существовании 2300 пульсаров, найденных по радиоволнам и 160 через гамма-лучи. Есть также 240 миллисекундных пульсаров, из которых 60 производят гамма-излучение.

Использование пульсаров

Пульсары – не просто удивительные космические объекты, но и полезные инструменты. Испускаемый свет может многое поведать о внутренних процессах. То есть, исследователи способны разобраться в физике нейтронных звезд. В этих объектах настолько высокое давление, что поведение материи отличается от привычного. Странное наполнение нейтронных звезд называют «ядерной пастой».

Пульсары приносят много пользы благодаря точности импульсов. Ученые знают конкретные объекты и воспринимают их как космические часы. Именно так начали появляться догадки о наличии других планет. Фактически, первая найденная экзопланета вращалась вокруг пульсара.

Не забывайте, что пульсары во время «мигания» продолжают двигаться, а значит, можно с их помощью измерять космические дистанции. Они также участвовали в проверке теории относительности Эйнштейна, вроде моментов с силой тяжести. Но регулярность пульсации может нарушаться гравитационными волнами. Это заметили в феврале 2016 года.

Кладбища пульсаров

Постепенно все пульсары замедляются. Излучение питается от магнитного поля, создаваемого вращением. В итоге, он также теряет свою мощность и прекращает посылать лучи. Ученые вывели специальную черту, где еще можно обнаружить гамма-лучи перед радиоволнами. Как только пульсар опускается ниже, его списывают в кладбище пульсаров.

Если пульсар сформировался из остатков сверхновой, то обладает огромным энергетическим запасом и быстрой скоростью вращения. Среди примеров можно вспомнить молодой объект PSR B0531+21. В такой фазе он может пробыть несколько сотен тысяч лет, после чего начнет терять скорость. Пульсары среднего возраста составляют большую часть населения и производят только радиоволны.

Однако, пульсар может продлить себе жизнь, если рядом есть спутник. Тогда он будет вытягивать его материал и увеличивать скорость вращения. Такие изменения могут произойти в любое время, поэтому пульсар способен возрождаться. Подобный контакт называют маломассивной рентгеновской двойной системой. Наиболее старые пульсары – миллисекундные. Некоторые достигают возраста в миллиарды лет.

Нейтронные звезды

Нейтронные звезды – довольно загадочные объекты, превышающие солнечную массу в 1.4 раза. Они рождаются после взрыва более крупных звезд. Давайте узнаем эти формирования поближе.

Когда взрывается звезда, массивнее Солнца в 4-8 раз, остается ядро с большой плотностью, продолжающее разрушаться. Гравитация так сильно давит на материал, что заставляет протоны и электроны сливаться, чтобы предстать в виде нейтронов. Так и рождается нейтронная звезда высокой плотности.

Эти массивные объекты способны достигать в диаметре всего 20 км. Чтобы вы осознали плотность, всего одна ложечка материала нейтронной звезды будет весить миллиард тонн. Гравитация на таком объекте в 2 миллиарда раз сильнее земной, а мощности хватает для гравитационного линзирования, позволяющего ученым рассмотреть заднюю часть звезды.

Толчок от взрыва оставляет импульс, который заставляет нейтронную звезду вращаться, достигая нескольких оборотов в секунду. Хотя они могут разгоняться до 43000 раз в минуту.

Пограничные слои вблизи компактных объектов

Астрофизик Валерий Сулейманов о возникновении аккреционных дисков, звездном ветре и веществе вокруг нейтронных звезд:

Недра нейтронных звезд

Астрофизик Сергей Попов об экстремальных состояниях вещества, составе нейтронных звезд и способах изучения недр:

Когда нейтронная звезда выступает частью двойной системы, где взорвалась сверхновая, картина выглядит еще более впечатляющей. Если вторая звезда уступала по массивности Солнцу, то тянет массу компаньона в «лепесток Роша». Это шарообразное облако материла, совершающее обороты вокруг нейтронной звезды. Если же спутник был больше солнечной массы в 10 раз, то передача массы также настраивается, но не такая устойчивая. Материал течет вдоль магнитных полюсов, нагревается и создаются рентгеновские пульсации.

К 2010 году было найдено 1800 пульсаров при помощи радиообнаружения и 70 через гамма-лучи. У некоторых экземпляров даже замечали планеты.

Типы нейтронных звезд

У некоторых представителей нейтронных звезд струи материала текут практически со скоростью света. Когда они пролетают мимо нас, то вспыхивают как свет маяка. Из-за этого их прозвали пульсарами.

Остаток сверхновой Корма-А, в центре которой находится нейтронная звезда

Нейтронные звезды являются остатками массивных звезд, которые достигли конца своего эволюционного пути во времени и пространстве.

Эти интересные объекты, рождаются от некогда массивных гигантов, которые в четыре-восемь раз больше нашего Солнца. Происходит это во вспышке сверхновой.

После такого взрыва внешние слои выбрасываются в космос, ядро остается, но она больше не в состоянии поддерживать ядерный синтез. Без внешнего давления от вышележащих слоев, она коллапсирует и катастрофически сжимается.

Несмотря на свой малый диаметр — около 20 км, нейтронные звезды могут похвастаться в 1,5 раза большей массой нежели чем у нашего Солнца. Таким образом, они являются невероятно плотными.

Маленькая ложка вещества звезды на Земле будет весить около ста миллионов тонн. В ней протоны и электроны объединяются в нейтроны – этот процесс называется нейтронизацией.

Состав

Состав их неизвестен, предполагают, что они могут состоять из сверхтекучей нейтронной жидкости. Они обладают чрезвычайно сильным гравитационным притяжением, гораздо больше, чем у Земли и даже у Солнца. Это гравитационные силы особенно впечатляют, поскольку она имеет небольшой размер.
Все они вращаются вокруг оси. При сжатии, угловой момент вращения сохраняется, а из-за уменьшения размеров, скорость вращения возрастает.

Из-за огромной скорости вращения, внешняя поверхность, представляющая собой твердую «кору» периодически трескается и происходят «звездотрясения», которые замедляют скорость вращения и сбрасывают «излишки» энергии в космос.

Ошеломляющее давление, которое существуют в ядре, может быть похоже на то, которое существовало в момент большого взрыва, но к сожалению, его нельзя смоделировать на Земле. Поэтому эти объекты являются идеальными природными лабораториями, где мы можем наблюдать энергии недоступные на Земле.

Радиопульсары

Радиоульсары были открыты в конце 1967 г. аспирантом Jocelyn Bell Burnell как радиоисточники, которые пульсируют на постоянной частоте.
Радиация, испускаемая звездой, видна как пульсирующий источник излучения или пульсар.

Схематическое изображение вращения нейтронной звезды

Радиопульсары (или просто пульсар) — это вращающиеся нейтронные звезды, струи частиц которых, движутся почти со скоростью света, как вращающийся луч маяка.

После непрерывного вращения, в течение нескольких миллионов лет, пульсары теряют свою энергию и становятся нормальными нейтронными звездами. На сегодня известно только около 1000 пульсаров, хотя их могут быть сотни в галактике.

Радиопульсар в Крабовидной туманности

Некоторые нейтронные звезды испускают рентгеновское излучение. Знаменитая Крабовидная туманность — хороший пример такого объекта, образовавшейся во время взрыва сверхновой. Эта вспышка сверхновой наблюдалась в 1054 году нашей эры.

Ветер от Пульсара, видео телескопа Чандра

Радиопульсар в Крабовидной туманности, сфотографированный с помощью космического телескопа Хаббла через фильтр 547nm (зеленый свет) с 7 августа 2000 года по 17 апреля 2001 года.

Магнетары

Нейтронные звезды имеют магнитное поле в миллионы раз сильнее, чем самое сильное магнитное поле, производимое на Земле. Они также известны как магнетары.

Планеты у нейтронных звезд

На сегодня известно, что у четырех есть планеты. Когда она находится в двойной системе, то возможно измерить ее массу. Из числа таких двоичных систем в радио или рентгеновском диапазоне, измеренные массы нейтронных звезд были примерно в 1.4 раза больше массы Солнца.

Двойные системы

Совсем иной тип пульсаров виден в некоторых рентгеновских двойных системах. В этих случаях, нейтронная звезда и обычная образуют двойную систему. Сильное гравитационное поле тянет материал из обычной звезды. Материал, падающий на нее в процессе аккреции, нагревается так сильно, что производит рентгеновские лучи. Импульсные рентгеновские лучи видны, когда горячие пятна на вращающемся пульсаре проходят через луч зрения с Земли.

Для бинарных систем, содержащих неизвестный объект, эта информация помогает отличить: является ли он нейтронной звездой, или например черной дырой, потому что черные дыры куда более массивные.

Астрономы изучали небесный покров с незапамятных времен. Однако, только со значительным скачком в развитии технологий, ученым удалось обнаружить такие объекты, которых у прежних поколений астрономов не было даже в воображении. Одними из них стали квазары и пульсары.

Несмотря на громадные расстояния до этих объектов, ученым удалось изучить их некоторые свойства. Но несмотря на это, они скрывают еще очень много нераскрытых тайн.

Что такое пульсары и квазары

Пульсар, как выяснилось – это нейтронная звезда. Его первооткрывателями стали Э.Хьюиш и его аспирант Д.Белл. Им удалось обнаружить импульсы, представляющие собой потоки излучения узкой направленности, которые становятся видны через определенные временные промежутки, поскольку этот эффект происходит за счет вращения нейтронных звезд.

Значительное уплотнение магнитного поля звезды и самой ее плотности происходит при ее сжатии. Она может уменьшиться до размеров в несколько десятков километров, и в такие моменты вращение происходит с невероятно большой скоростью. Эта скорость в некоторых случаях достигает тысячных долей секунды. Отсюда и получаются электромагнитные излучаемые волны.

Квазары и пульсары можно назвать самыми необычными и загадочными открытиями астрономии. Поверхность нейтронной звезды (пульсара) обладает меньшим давлением, нежели ее центр, по этой причине происходит распад нейтронов на электроны и протоны. Электроны разгоняются до неимоверных скоростей за счет наличия мощного магнитного поля. Порой эта скорость достигает скорости света, следствием чего является выброс электронов от магнитных полюсов звезды. Два узких пучка электромагнитных волн – именно так выглядит перемещение заряженных частиц. То есть электронами в сторону своего направления испускается излучение.

Продолжая перечисление необычных явлений, связанных с нейтронными звездами, следует отметить их внешний слой. В этой сфере встречаются пространства, в которых ядро не может быть разрушено по причине недостаточной плотности вещества. Следствием этого является покрытие самой плотной корой за счет образования кристаллической структуры. В итоге накапливается напряжение и в определенный момент эта плотная поверхность начинает трескаться. Этот феномен ученые прозвали «звездотрясением».

Пульсары и квазары остаются полностью неизученными. Но если удивительные исследования поведали нам о пульсарах или т.н. нейтронных звездах много нового, то квазары держат астрономов в напряжении неизведанности.

Впервые мир узнал о квазарах в 1960 году. Открытие гласило, что это объекты с небольшим угловыми размерами, которым свойственна высокая светимость, а по классу они относятся к внегалактическим объектам. По той причине, что они обладают довольно маленьким угловым размером, многие годы считалось, что это просто звезды.

Точного количества обнаруженных квазаров неизвестно, но в 2005 году проводились исследования, в которых насчитывалось 195 тысяч квазаров. Пока ничего доступного для объяснения о них неизвестно. Существует масса предположений, однако ни одно из них не имеет каких-либо подтверждений.

Астрономы выяснили только то, что за временной отрезок менее 24 часов их блеск отмечает достаточную переменность. По этим данным можно отметить их относительно небольшой размер области излучений, который сопоставим с размерами Солнечной системы. Найденные квазары существуют и на расстоянии до 10 миллиардов световых лет. Разглядеть их удалось по причине их высочайшего уровня светимости.

Самый близкий подобный объект к нашей планете расположился приблизительно на отметке в 2 миллиарда световых лет. Возможно, грядущие исследования и используемые в них новейшие технологии предоставят человечеству новые познания о белых пятнах открытого космоса.

– это космические источники радио-, оптического, рентгеновского и/или гамма-излучений, приходящих на Землю в виде периодических всплесков (импульсов).

Поэтому по виду излучения их разделяют на радиопульсары, оптические пульсары, рентгеновские и/или гамма-пульсары. Природа излучения пульсаров пока полностью не раскрыта, модели пульсаров и механизмов излучения ими энергии изучаются теоретически. На сегодняшний день преобладает мнение о пульсарах как о вращающихся нейтронных звездах с сильным магнитным полем.

Открытие пульсаров

Это произошло в 1967 г. Английский радиоастроном Э. Хьюиш и его сотрудники обнаружили идущие как бы из пустого места в космосе короткие радиоимпульсы, повторяющиеся стабильно с периодом не менее секунды. Сначала результаты наблюдений за этим явлением хранились в тайне, т.к. можно было предположить, что эти импульсы радиоизлучения имеют искусственное происхождение – возможно, это сигналы какой-нибудь внеземной цивилизации? Но источника излучения, совершающего орбитальное движение, обнаружено не было, зато группа Хьюиша нашла еще 3 источника подобных сигналов. Таким образом, надежда на сигналы внеземной цивилизации исчезла, и в феврале 1968 г. в появилось сообщение об открытии быстропеременных внеземных радиоисточников неизвестной природы с высокостабильной частотой.

Это сообщение вызвало настоящую сенсацию, а в 1974 г. за это открытие Хьюиш получил Нобелевскую премию. Пульсар этот называется PSR J1921+2153. В настоящее время известно около 2 тысяч радиопульсаров, они обычно обозначаются буквами PSR и цифрами, которые выражают их экваториальные координаты.

Что представляет собой радиопульсар?

Астрофизики пришли к общему мнению, что радиопульсар представляет собой нейтронную звезду. Она испускает узконаправленные потоки радиоизлучения, и в результате вращения нейтронной звезды поток попадает в поле зрения внешнего наблюдателя через равные промежутки времени - так образуются импульсы пульсара. Большинство астрономов уверены в том, что пульсары - это крохотные нейтронные звезды с диаметром в несколько километров, вращающиеся с периодами в доли секунды. Их даже называют иногда «звездными волчками». Из-за магнитного поля излучение пульсара похоже на луч прожектора: когда из-за вращения нейтронной звезды луч попадает на антенну радиотелескопа, видны всплески излучения. Сигналы пульсаров на разных радиочастотах распространяются в межзвездной плазме с разной скоростью. По взаимному запаздыванию сигналов определяют расстояние до пульсара, определяют их расположение в Галактике. Распределение пульсаров приблизительно соответствует распределению остатков сверхновых звезд.

Рентгеновские пульсары

Рентгеновский пульсар представляет собой тесную двойную систему , одним из компонентов которой является нейтронная звезда , а вторым - нормальная звезда , в результате чего происходит перетекание материи с обычной звезды на нейтронную. Нейтронные звезды - это звезды с очень малыми размерами (20-30 км в диаметре) и чрезвычайно высокими плотностями, превышающими плотность атомного ядра. Астрономы считают, что нейтронные звёзды появляются в результате взрывов сверхновых. При взрыве сверхновой происходит стремительный коллапс ядра нормальной звезды, которое затем и превращается в нейтронную звезду. Во время сжатия в силу закона сохранения момента импульса, а также сохранения магнитного потока происходит резкое увеличение скорости вращения и магнитного поля звезды. Таким образом, для рентгеновского пульсара важны именно два этих признака: быстрая скорость вращения и чрезвычайно высокие магнитные поля. Материя, ударяясь о твердую поверхность нейтронной звезды, сильно разогревается и начинает излучать в рентгене. Близкими родственниками рентгеновских пульсаров являются поляры и промежуточные поляры . Различие между пульсарами и полярами заключается в том, что пульсар - это нейтронная звезда, а поляр - белый карлик. Соответственно, у них ниже магнитные поля и скорость вращения.

Оптические пульсары

В январе 1969 г. район пульсара в Крабовидной туманности был обследован оптическим телескопом с фотоэлектрической аппаратурой, способной регистрировать быстрые колебания блеска. Было отмечено существование оптического объекта с колебаниями блеска, имеющими такой же период, как и радиопульсар в этой туманности. Этим объектом оказалась звездочка 16-й величины в центре туманности. Она имела какой-то неразборчивый спектр без спектральных линий. Исследуя в 1942 г. Крабовидную туманность, В. Бааде указал на нее как на возможный звездный остаток сверхновой, а И.С. Шкловский в более поздние годы предполагал, что она является источником релятивистских частиц и фотонов высокой энергии. Но все это были лишь предположения. И вот звезда оказалась оптическим пульсаром , имеющим одинаковые с радиопульсаром период и интеримпульсы, а физически она должна быть нейтронной звездой, расход энергии которой достаточен для поддержания свечения и всех видов излучений Крабовидной туманности. После открытия оптического пульсара были проведены поиски и в других остатках сверхновых, особенно в тех, где уже найдены радиопульсары. Но только в 1977 г. австралийским астрономам с помощью специальной техники удалось нащупать пульсацию в оптическом диапазоне исключительно слабой звездочки 25-й величины в остатке сверхновой Паруса X. Третий оптический пульсар нашли в 1982 г. в созвездии Лисички по радиоизлучению. Остатка сверхновой не найдено.

Что же собой представляет оптический пульсар? Центральные компоненты спектральных линий SS 433 показывают перемещения с периодом 13 суток и изменения скорости движения от -73 до +73 км/с. Видимо, здесь также присутствует тесная двойная система, состоящая из оптически наблюдаемого горячего сверхгиганта классов О или В и невидимого в оптике рентгеновского компонента. Сверхгигант имеет массу более десяти солнечных, он раздулся до предельных границ собственной зоны тяготения, пополняет своим газом диск, окружающий по экватору вращения рентгеновский компонент. Плоскость диска перпендикулярна оси вращения компактного объекта, каким является рентгеновский компонент, а не лежит в орбитальной плоскости двойной системы. Поэтому диск и обе газовые струи ведут себя как наклонно вращающийся волчок, причем ось их вращения прецессирует (описывает конус), совершая один оборот за 164 суток (это известное явление прецессии вращающихся тел). Рентгеновский компонент, пожирающий газ диска и выбрасывающий струи, может быть нейтронной звездой.

Относятся к числу самых мощных космических источников гамма-излучения. Астрофизики очень хотят выяснить, каким образом эти нейтронные звезды ухитряются так сильно светить в гамма-диапазоне. До запуска телескопа Ферми было известно лишь около десятка гамма-пульсаров, в то время как общее число пульсаров составило примерно 1800. Теперь новая обсерватория стала открывать гамма-пульсары десятками. Ученые надеются, что ее работа дастмножество ценных сведений, которые помогут лучше понять природу гамма-пульсаров и других космическихгенераторов гамма-квантов.

В 2012 г. астрономы обнаружили при помощи орбитального гамма-телескопа "Ферми" быстрейший на сегодня гамма-пульсар в созвездии Центавра, совершающий один оборот за 2,5 миллисекунды и пожирающий при этом останки звезды-компаньона размером с Юпитер. (Га́мма-излуче́ние (гамма-лучи , γ-лучи ) - вид электромагнитного излучения с чрезвычайно малой длиной волны - < 5·10 −3 нм и, вследствие этого, ярко выраженными корпускулярными и слабо выраженными волновыми свойствами. На картинке гамма-излучение показано фиолетовым цветом.

Подытожим…

Нейтронные звезды – удивительные объекты. Их в последнее время наблюдают с особенным интересом, т.к. загадку представляет не только их строение, но и огромная их плотность, сильнейшие магнитные и гравитационные поля. Материя там находится в особом состоянии, напоминающем огромное атомное ядро, и эти условия невозможно воспроизвести в земных лабораториях.
Пульсар - это просто огромный намагниченный волчок, крутящийся вокруг оси, не совпадающей с осью магнита . Если бы на него ничего не падало и он ничего не испускал, то его радиоизлучение имело бы частоту вращения и мы никогда бы его не услышали на Земле. Но дело в том, что данный волчок имеет колоссальную массу и высокую температуру поверхности, а вращающееся магнитное поле создает огромное по напряженности электрическое поле, способное разгонять протоны и электроны почти до световых скоростей. Причем все эти заряженные частицы, носящиеся вокруг пульсара, зажаты в ловушке из его колоссального магнитного поля. И только в пределах небольшого телесного угла около магнитной оси они могут вырваться на волю (нейтронные звезды обладают самыми сильными магнитными полями во Вселенной, достигающими 1010-1014 гаусс. Сравним: земное поле составляет 1 гаусс, солнечное - 10-50 гаусс). Именно эти потоки заряженных частиц и являются источником того радиоизлучения, по которому и были открыты пульсары, оказавшиеся в дальнейшем нейтронными звездами. Поскольку магнитная ось нейтронной звезды необязательно совпадает с осью ее вращения, то при вращении звезды поток радиоволн распространяется в космосе подобно лучу проблескового маяка - лишь на миг прорезая окружающую мглу.