Эллипс определение уравнение основные свойства. Уравнение эллипса. Определение гиперболы. Фокусы гиперболы

Эллипс определение уравнение основные свойства. Уравнение эллипса. Определение гиперболы. Фокусы гиперболы

Введение

Впервые кривые второго порядка изучались одним из учеников Платона. Его работа заключалась в следующем: если взять две пересекающиеся прямые и вращать их вокруг биссектрисы угла, ими образованного, то получится конусная поверхность. Если же пересечь эту поверхность плоскостью, то в сечении получаются различные геометрические фигуры, а именно эллипс, окружность, парабола, гипербола и несколько вырожденных фигур.

Однако эти научные знания нашли применение лишь в XVII, когда стало известно, что планеты движутся по эллиптическим траекториям, а пушечный снаряд летит по параболической. Ещё позже стало известно, что если придать телу первую космическую скорость, то оно будет двигаться по окружности вокруг Земли, при увеличении этой скорости -- по эллипсу, а по достижении второй космической скорости тело по параболе покинет поле притяжения Земли.

Эллипс и его уравнение

Определение 1. Эллипсом называется множество точек на плоскости, сумма расстояний от каждой из которых до двух заданных точек, называемых фокусами, есть величина постоянная.

Фокусы эллипса обозначаются буквами и, расстояние между фокусами - через, а сумма расстояний от любой точки эллипса до фокусов - через. Причем 2a > 2c.

Каноническое уравнение эллипса имеет вид:

где связаны между собой равенством a 2 + b 2 = c 2 (или b 2 - a 2 = c 2).

Величина называется большой осью, а - малой осью эллипса.

Определение 2. Эксцентриситетом эллипса называется отношение расстояния между фокусами к длине большой оси.

Обозначается буквой.

Так как по определению 2a>2c, то эксцентриситет всегда выражается правильной дробью, т.е. .

Определение 7.1. Множество всех точек на плоскости, для которых сумма расстояний до двух фиксированных точек F 1 и F 2 есть заданная постоянная величина, называют эллипсом.

Определение эллипса дает следующий способ его геометрического построения. Фиксируем на плоскости две точки F 1 и F 2 , а неотрицательную постоянную величину обозначим через 2а. Пусть расстояние между точками F 1 и F 2 равно 2c. Представим себе, что нерастяжимая нить длиной 2а закреплена в точках F 1 и F 2 , например, при помощи двух иголок. Ясно, что это возможно лишь при а ≥ с. Натянув нить карандашом, начертим линию, которая и будет эллипсом (рис. 7.1).

Итак, описываемое множество не пусто, если а ≥ с. При а = с эллипс представляет собой отрезок с концами F 1 и F 2 , а при с = 0, т.е. если указанные в определении эллипса фиксированные точки совпадают, он является окружностью радиуса а. Отбрасывая эти вырожденные случаи, будем далее предполать, как правило, что а > с > 0.

Фиксированные точки F 1 и F 2 в определении 7.1 эллипса (см. рис. 7.1) называют фокусами эллипса , расстояние между ними, обозначенное через 2c, - фокальным расстоянием , а отрезки F 1 M и F 2 M, соединяющие произвольную точку M на эллипсе с его фокусами, - фокальными радиусами .

Вид эллипса полностью определяется фокальным расстоянием |F 1 F 2 | = 2с и параметром a, а его положение на плоскости - парой точек F 1 и F 2 .

Из определения эллипса следует, что он симметричен относительно прямой, проходящей через фокусы F 1 и F 2 , а также относительно прямой, которая делит отрезок F 1 F 2 пополам и перпендикулярна ему (рис. 7.2, а). Эти прямые называют осями эллипса . Точка O их пересечения является центром симметрии эллипса, и ее называют центром эллипса , а точки пересечения эллипса с осями симметрии (точки A, B, C и D на рис. 7.2, а) - вершинами эллипса .


Число a называют большой полуосью эллипса , а b = √(a 2 - c 2) - его малой полуосью . Нетрудно заметить, что при c > 0 большая полуось a равна расстоянию от центра эллипса до тех его вершин, которые находятся на одной оси с фокусами эллипса (вершины A и B на рис. 7.2, а), а малая полуось b равна расстоянию от центра эллипса до двух других его вершин (вершины C и D на рис. 7.2, а).

Уравнение эллипса. Рассмотрим на плоскости некоторый эллипс с фокусами в точках F 1 и F 2 , большой осью 2a. Пусть 2c - фокальное расстояние, 2c = |F 1 F 2 |

Выберем прямоугольную систему координат Oxy на плоскости так, чтобы ее начало совпало с центром эллипса, а фокусы находились на оси абсцисс (рис. 7.2, б). Такую систему координат называют канонической для рассматриваемого эллипса, а соответствующие переменные - каноническими .

В выбранной системе координат фокусы имеют координаты F 1 (c;0), F 2 (-c;0). Используя формулу расстояния между точками, запишем условие |F 1 M| + |F 2 M| = 2a в координатах:

√((x - c) 2 + y 2) + √((x + c) 2 + y 2) = 2a. (7.2)

Это уравнение неудобно, так как в нем присутствуют два квадратных радикала. Поэтому преобразуем его. Перенесем в уравнении (7.2) второй радикал в правую часть и возведем в квадрат:

(x - c) 2 + y 2 = 4a 2 - 4a√((x + c) 2 + y 2) + (x + c) 2 + y 2 .

После раскрытия скобок и приведения подобных слагаемых получаем

√((x + c) 2 + y 2) = a + εx

где ε = c/a. Повторяем операцию возведения в квадрат, чтобы убрать и второй радикал: (x + c) 2 + y 2 = a 2 + 2εax + ε 2 x 2 , или, учитывая значение введенного параметра ε, (a 2 - c 2) x 2 /a 2 + y 2 = a 2 - c 2 . Так как a 2 - c 2 = b 2 > 0, то

x 2 /a 2 + y 2 /b 2 = 1, a > b > 0. (7.4)

Уравнению (7.4) удовлетворяют координаты всех точек, лежащих на эллипсе. Но при выводе этого уравнения использовались неэквивалентные преобразования исходного уравнения (7.2) - два возведения в квадрат, убирающие квадратные радикалы. Возведение уравнения в квадрат является эквивалентным преобразованием, если в обеих его частях стоят величины с одинаковым знаком, но мы этого в своих преобразованиях не проверяли.

Мы можем не проверять эквивалентность преобразований, если учтем следующее. Пара точек F 1 и F 2 , |F 1 F 2 | = 2c, на плоскости определяет семейство эллипсов с фокусами в этих точках. Каждая точка плоскости, кроме точек отрезка F 1 F 2 , принадлежит какому-нибудь эллипсу указанного семейства. При этом никакие два эллипса не пересекаются, так как сумма фокальных радиусов однозначно определяет конкретный эллипс. Итак, описанное семейство эллипсов без пересечений покрывает всю плоскость, кроме точек отрезка F 1 F 2 . Рассмотрим множество точек, координаты которых удовлетворяют уравнению (7.4) с данным значением параметра a. Может ли это множество распределяться между несколькими эллипсами? Часть точек множества принадлежит эллипсу с большой полуосью a. Пусть в этом множестве есть точка, лежащая на эллипсе с большой полуосью а. Тогда координаты этой точки подчиняются уравнению

т.е. уравнения (7.4) и (7.5) имеют общие решения. Однако легко убедиться, что система

при ã ≠ a решений не имеет. Для этого достаточно исключить, например, x из первого уравнения:

что после преобразований приводит к уравнению

не имеющему решений при ã ≠ a, поскольку . Итак, (7.4) есть уравнение эллипса с большой полуосью a > 0 и малой полуосью b =√(a 2 - c 2) > 0. Его называют каноническим уравнением эллипса .

Вид эллипса. Рассмотренный выше геометрический способ построения эллипса дает достаточное представление о внешнем виде эллипса. Но вид эллипса можно исследовать и с помощью его канонического уравнения (7.4). Например, можно, считая у ≥ 0, выразить у через x: y = b√(1 - x 2 /a 2), и, исследовав эту функцию, построить ее график. Есть еще один способ построения эллипса. Окружность радиуса a с центром в начале канонической системы координат эллипса (7.4) описывается уравнением x 2 + y 2 = а 2 . Если ее сжать с коэффициентом a/b > 1 вдоль оси ординат , то получится кривая, которая описывается уравнением x 2 + (ya/b) 2 = a 2 , т. е. эллипс.

Замечание 7.1. Если ту же окружность сжать с коэффициентом a/b

Эксцентриситет эллипса . Отношение фокального расстояния эллипса к его большой оси называют эксцентриситетом эллипса и обозначают через ε. Для эллипса, заданного

каноническим уравнением (7.4), ε = 2c/2a = с/a. Если же в (7.4) параметры a и b связаны неравенством a

При с =0, когда эллипс превращается в окружность, и ε = 0. В остальных случаях 0

Уравнение (7.3) эквивалентно уравнению (7.4), поскольку эквивалентны уравнения (7.4) и (7.2) . Поэтому уравнением эллипса является и (7.3). Кроме того, соотношение (7.3) интересно тем, что дает простую, не содержащую радикалов, формулу для длины |F 2 M| одного из фокальных радиусов точки M(x; у) эллипса: |F 2 M| = a + εx.

Аналогичная формула для второго фокального радиуса может быть получена из соображений симметрии либо повторением выкладок, в которых перед возведением в квадрат уравнения (7.2) в правую часть переносится первый радикал, а не второй. Итак, для любой точки M(x; у) на эллипсе (см. рис. 7.2)

|F 1 M | = a - εx, |F 2 M| = a + εx, (7.6)

и каждое из этих уравнений является уравнением эллипса.

Пример 7.1. Найдем каноническое уравнение эллипса с большой полуосью 5 и эксцентриситетом 0,8 и построим его.

Зная большую полуось эллипса a = 5 и эксцентриситет ε = 0,8, найдем его малую полуось b. Поскольку b = √(a 2 - с 2), а с = εa = 4, то b = √(5 2 - 4 2) = 3. Значит каноническое уравнение имеет вид x 2 /5 2 + y 2 /3 2 = 1. Для построения эллипса удобно изобразить прямоугольник с центром в начале канонической системы координат, стороны которого параллельны осям симметрии эллипса и равны его соответствующим осям (рис. 7.4). Этот прямоугольник пересекается с

осями эллипса в его вершинах A(-5; 0), B(5; 0), C(0; -3), D(0; 3), причем сам эллипс вписан в него. На рис. 7.4 указаны также фокусы F 1,2 (±4; 0) эллипса.

Геометрические свойства эллипса. Перепишем первое уравнение в (7.6) в виде |F 1 M| = (а/ε - x)ε. Отметим, что величина а/ε - x при а > с положительна, так как фокус F 1 не принадлежит эллипсу. Эта величина представляет собой расстояние до вертикальной прямой d: x = а/ε от точки M(x; у), лежащей левее этой прямой. Уравнение эллипса можно записать в виде

|F 1 M|/(а/ε - x) = ε

Оно означает, что этот эллипс состоит из тех точек M(x; у) плоскости, для которых отношение длины фокального радиуса F 1 M к расстоянию до прямой d есть величина постоянная, равная ε (рис. 7.5).

У прямой d есть " двойник " - вертикальная прямая d", симметричная d относительно центра эллипса, которая задается уравнением x = -а/ε. Относительно d" эллипс описывается так же, как и относительно d. Обе прямые d и d" называют директрисами эллипса . Директрисы эллипса перпендикулярны той оси симметрии эллипса, на которой расположены его фокусы, и отстоят от центра эллипса на расстояние а/ε = а 2 /с (см. рис. 7.5).

Расстояние p от директрисы до ближайшего к ней фокуса называют фокальным параметром эллипса . Этот параметр равен

p = a/ε - c = (a 2 - c 2)/c = b 2 /c

Эллипс обладает еще одним важным геометрическим свойством: фокальные радиусы F 1 M и F 2 M составляют с касательной к эллипсу в точке M равные углы (рис. 7.6).

Это свойство имеет наглядный физический смысл. Если в фокусе F 1 расположить источник света, то луч, выходящий из этого фокуса, после отражения от эллипса пойдет по второму фокальному радиусу, так как после отражения он будет находиться под тем же углом к кривой, что и до отражения. Таким образом, все лучи, выходящие из фокуса F 1 , сконцентрируются во втором фокусе F 2 , и наоборот. Исходя из данной интерпретации указанное свойство называют оптическим свойством эллипса .

Точки F 1 (–c , 0) и F 2 (c , 0), где называются фокусами эллипса , при этом величина 2c определяет междуфокусное расстояние .

Точки А 1 (–а , 0), А 2 (а , 0), В 1 (0, –b ), B 2 (0, b ) называются вершинами эллипса (рис. 9.2), при этом А 1 А 2 = 2а образует большую ось эллипса, а В 1 В 2 – малую, – центр эллипса.

Основные параметры эллипса, характеризующие его форму:

ε = с /a эксцентриситет эллипса ;

фокальные радиусы эллипса (точка М принадлежит эллипсу), причем r 1 = a + εx , r 2 = a εx ;

директрисы эллипса .


Для эллипса справедливо: директрисы не пересекают границу и внутреннюю область эллипса, а также обладают свойством

Эксцентриситет эллипса выражает его меру «сжатости».

Если b > a > 0, то эллипс задается уравнением (9.7), для которого вместо условия (9.8) выполняется условие

Тогда 2а – малая ось, 2b – большая ось, – фокусы (рис. 9.3). При этом r 1 + r 2 = 2b ,
ε = c /b , директрисы определяются уравнениями:


При условии имеем (в виде частного случая эллипса) окружность радиуса R = a . При этом с = 0, а значит, ε = 0.

Точки эллипса обладают характеристическим свойством : сумма расстояний от каждой из них до фокусов есть величина постоянная, равная 2а (рис. 9.2).

Для параметрического задания эллипса (формула (9.7)) в случаях выполнения условий (9.8) и (9.9) в качестве параметра t может быть взята величина угла между радиус-вектором точки, лежащей на эллипсе, и положительным направлением оси Ox :

Если центр эллипса с полуосями находится в точке то его уравнение имеет вид:

Пример 1. Привести уравнение эллипса x 2 + 4y 2 = 16 к каноническому виду и определить его параметры. Изобразить эллипс.

Решение . Разделим уравнение x 2 + 4y 2 = 16 на 16, после чего получим:

По виду полученного уравнения заключаем, что это каноническое уравнение эллипса (формула (9.7)), где а = 4 – большая полуось, b = 2 – малая полуось. Значит, вершинами эллипса являются точки A 1 (–4, 0), A 2 (4, 0), B 1 (0, –2), B 2 (0, 2). Так как – половина междуфокусного расстояния, то точки являются фокусами эллипса. Вычислим эксцентриситет:

Директрисы D 1 , D 2 описываются уравнениями:

Изображаем эллипс (рис. 9.4).


Пример 2. Определить параметры эллипса

Решение. Сравним данное уравнение с каноническим уравнением эллипса со смещенным центром. Находим центр эллипса С : Большая полуось малая полуось прямые – главные оси. Половина междуфокусного расстояния а значит, фокусы Эксцентриситет Директрисы D 1 и D 2 могут быть описаны с помощью уравнений: (рис. 9.5).


Пример 3. Определить, какая кривая задается уравнением, изобразить ее:

1) x 2 + y 2 + 4x – 2y + 4 = 0; 2) x 2 + y 2 + 4x – 2y + 6 = 0;

3) x 2 + 4y 2 – 2x + 16y + 1 = 0; 4) x 2 + 4y 2 – 2x + 16y + 17 = 0;

Решение. 1) Приведем уравнение к каноническому виду методом выделения полного квадрата двучлена:

x 2 + y 2 + 4x – 2y + 4 = 0;

(x 2 + 4x ) + (y 2 – 2y ) + 4 = 0;

(x 2 + 4x + 4) – 4 + (y 2 – 2y + 1) – 1 + 4 = 0;

(x + 2) 2 + (y – 1) 2 = 1.

Таким образом, уравнение может быть приведено к виду

(x + 2) 2 + (y – 1) 2 = 1.

Это уравнение окружности с центром в точке (–2, 1) и радиусом R = 1 (рис. 9.6).


2) Выделяем полные квадраты двучленов в левой части уравнения и получаем:

(x + 2) 2 + (y – 1) 2 = –1.

Это уравнение не имеет смысла на множестве действительных чисел, так как левая часть неотрицательна при любых действительных значениях переменных x и y , а правая – отрицательна. Поэтому говорят, что это уравнение «мнимой окружности» или оно задает пустое множество точек плоскости.

3) Выделяем полные квадраты:

x 2 + 4y 2 – 2x + 16y + 1 = 0;

(x 2 – 2x + 1) – 1 + 4(y 2 + 4y + 4) – 16 + 1 = 0;

(x – 1) 2 + 4(y + 2) 2 – 16 = 0;

(x – 1) 2 + 4(y + 2) 2 = 16.

Значит, уравнение имеет вид:

Полученное уравнение, а следовательно, и исходное задают эллипс. Центр эллипса находится в точке О 1 (1, –2), главные оси задаются уравнениями y = –2, x = 1, причем большая полуось а = 4, малая полуось b = 2 (рис. 9.7).


4) После выделения полных квадратов имеем:

(x – 1) 2 + 4(y + 2) 2 – 17 + 17 = 0 или (x – 1) 2 + 4(y + 2) 2 = 0.

Полученное уравнение задает единственную точку плоскости с координатами (1, –2).

5) Приведем уравнение к каноническому виду:

Очевидно, оно задает эллипс, центр которого находится в точке главные оси задаются уравнениями причем большая полуось малая полуось (рис. 9.8).


Пример 4. Записать уравнение касательной к окружности радиуса 2 с центром в правом фокусе эллипса x 2 + 4y 2 = 4 в точке пересечения с осью ординат.

Решение. Уравнение эллипса приведем к каноническому виду (9.7):

Значит, и правый фокус – Поэтому, искомое уравнение окружности радиуса 2 имеет вид (рис. 9.9):

Окружность пересекает ось ординат в точках, координаты которых определяются из системы уравнений:

Получаем:

Пусть это точки N (0; –1) и М (0; 1). Значит, можно построить две касательные, обозначим их Т 1 и Т 2 . По известному свойству касательная перпендикулярна радиусу, проведенному в точку касания.

Пусть Тогда уравнение касательной Т 1 примет вид:

Значит, или Т 1: Оно равносильно уравнению

Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.

Общий вид уравнения кривой второго порядка следующий:

где A, B, C, D, E, F - числа и хотя бы один из коэффициентов A, B, C не равен нулю.

При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.

Эллипс, заданный каноническим уравнением

Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.

Фокусы обозначены как и на рисунке ниже.

Каноническое уравнение эллипса имеет вид:

где a и b (a > b ) - длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.

Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.

Ось абсцисс эллипс пересекает в точках (a , О ) и (- a , О ), а ось ординат - в точках (b , О ) и (- b , О ). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат - малой осью. Их отрезки от вершины до центра эллипса называются полуосями.

Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность - частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a /b раз вдоль оси Oy .

Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.

Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:

Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия - эллипс.

Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.

Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось - это a = 5 , меньшая полуось - это b = 4 . Получаем каноническое уравнение эллипса:

Точки и , обозначенные зелёным на большей оси, где

называются фокусами .

называется эксцентриситетом эллипса.

Отношение b /a характеризует "сплюснутость" эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.

Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.

Решение. Делаем несложные умозаключения:

Если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,

Если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.

Подставляем и вычисляем:

Результат - каноническое уравнение эллипса:

Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .

Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c , нужное для вычисления длины меньшей полуоси:

.

Вычисляем квадрат длины меньшей полуоси:

Составляем каноническое уравнение эллипса:

Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .

Решение. Следует найти число c , определяющее первые координаты фокусов эллипса:

.

Получаем фокусы эллипса:

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) расстояние между фокусами 30, а большая ось 34

2) малая ось 24, а один из фокусов находится в точке (-5; 0)

3) эксцентриситет , а один из фокусов находится в точке (6; 0)

Продолжаем решать задачи на эллипс вместе

Если - произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и - расстояния до этой точки от фокусов , то формулы для расстояний - следующие:

Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a .

Прямые, определяемые уравнениями

называются директрисами эллипса (на чертеже - красные линии по краям).

Из двух вышеприведённых уравнений следует, что для любой точки эллипса

,

где и - расстояния этой точки до директрис и .

Пример 7. Дан эллипс . Составить уравнение его директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. . Все данные для этого есть. Вычисляем:

.

Получаем уравнение директрис эллипса:

Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки , а директрисами являются прямые .

Лекции по алгебре и геометрии. Семестр 1.

Лекция 15. Эллипс.

Глава 15. Эллипс.

п.1. Основные определения.

Определение. Эллипсом называется ГМТ плоскости сумма расстояний которых до двух фиксированных точек плоскости, называемых фокусами, есть величина постоянная.

Определение. Расстояние от произвольной точки М плоскости до фокуса эллипса называется фокальным радиусом точки М.

Обозначения:
– фокусы эллипса,
– фокальные радиусы точки М.

По определению эллипса, точка М является точкой эллипса тогда и только тогда, когда
– постоянная величина. Эту постоянную принято обозначать 2а:

. (1)

Заметим, что
.

По определению эллипса, его фокусы есть фиксированные точки, поэтому расстояние между ними есть также величина постоянная для данного эллипса.

Определение. Расстояние между фокусами эллипса называется фокусным расстоянием.

Обозначение:
.

Из треугольника
следует, что
, т.е.

.

Обозначим через b число равное
, т.е.

. (2)

Определение. Отношение

(3)

называется эксцентриситетом эллипса.

Введем на данной плоскости систему координат, которую мы будем называть канонической для эллипса.

Определение. Ось, на которой лежат фокусы эллипса, называется фокальной осью.

Построим каноническую для эллипса ПДСК, см. рис.2.

В качестве оси абсцисс выбираем фокальную ось, а ось ординат проводим через середину отрезка
перпендикулярно фокальной оси.

Тогда фокусы имеют координаты
,
.

п.2. Каноническое уравнение эллипса.

Теорема. В канонической для эллипса системе координат уравнение эллипса имеет вид:

. (4)

Доказательство. Доказательство проведем в два этапа. На первом этапе мы докажем, что координаты любой точки, лежащей на эллипсе удовлетворяют уравнению (4). На втором этапе мы докажем, что любое решение уравнения (4) дает координаты точки, лежащей на эллипсе. Отсюда будет следовать, что уравнению (4) удовлетворяют те и только те точки координатной плоскости, которые лежат на эллипсе. Отсюда и из определения уравнения кривой будет следовать, что уравнение (4) является уравнением эллипса.

1) Пусть точка М(х, у) является точкой эллипса, т.е. сумма ее фокальных радиусов равна 2а:

.

Воспользуемся формулой расстояния между двумя точками на координатной плоскости и найдем по этой формуле фокальные радиусы данной точки М:

,
, откуда получаем:

Перенесем один корень в правую часть равенства и возведем в квадрат:

Сокращая, получаем:

Приводим подобные, сокращаем на 4 и уединяем радикал:

.

Возводим в квадрат

Раскрываем скобки и сокращаем на
:

откуда получаем:

Используя равенство (2), получаем:

.

Разделив последнее равенство на
, получаем равенство (4), ч.т.д.

2) Пусть теперь пара чисел (х, у) удовлетворяет уравнению (4) и пусть М(х, у) – соответствующая точка на координатной плоскости Оху.

Тогда из (4) следует:

.

Подставляем это равенство в выражение для фокальных радиусов точки М:

.

Здесь мы воспользовались равенством (2) и (3).

Таким образом,
. Аналогично,
.

Теперь заметим, что из равенства (4) следует, что

или
и т.к.
, то отсюда следует неравенство:

.

Отсюда, в свою очередь, следует, что

или
и

,
. (5)

Из равенств (5) следует, что
, т.е. точка М(х, у) является точкой эллипса, ч.т.д.

Теорема доказана.

Определение. Уравнение (4) называется каноническим уравнением эллипса.

Определение. Канонические для эллипса оси координат называются главными осями эллипса.

Определение. Начало канонической для эллипса системы координат называется центром эллипса.

п.3. Свойства эллипса.

Теорема. (Свойства эллипса.)

1. В канонической для эллипса системе координат, все

точки эллипса находятся в прямоугольнике

,
.

2. Точки лежат на

3. Эллипс является кривой, симметричной относительно

своих главных осей.

4. Центр эллипса является его центром симметрии.

Доказательство. 1, 2) Сразу же следует из канонического уравнения эллипса.

3, 4) Пусть М(х, у) – произвольная точка эллипса. Тогда ее координаты удовлетворяют уравнению (4). Но тогда координаты точек также удовлетворяют уравнению (4), и, следовательно, являются точками эллипса, откуда и следуют утверждения теоремы.

Теорема доказана.

Определение. Величина 2а называется большой осью эллипса, величина а называется большой полуосью эллипса.

Определение. Величина 2b называется малой осью эллипса, величина b называется малой полуосью эллипса.

Определение. Точки пересечения эллипса с его главными осями называются вершинами эллипса.

Замечание. Эллипс можно построить следующим образом. На плоскости в фокусы "забиваем по гвоздю" и закрепляем на них нить длиной
. Затем берем карандаш и с его помощью натягиваем нить. Затем передвигаем карандашный грифель по плоскости, следя за тем, чтобы нить была в натянутом состоянии.

Из определения эксцентриситета следует, что

Зафиксируем число а и устремим число с к нулю. Тогда при
,
и
. В пределе мы получаем

или
– уравнение окружности.

Устремим теперь
. Тогда
,
и мы видим, что в пределе эллипс вырождается в отрезок прямой
в обозначениях рисунка 3.

п.4. Параметрические уравнения эллипса.

Теорема. Пусть
– произвольные действительные числа. Тогда система уравнения

,
(6)

является параметрическими уравнениями эллипса в канонических для эллипса системе координат.

Доказательство. Достаточно доказать, что система уравнений (6) равносильна уравнению (4), т.е. они имеют одно и то же множество решений.

1) Пусть (х, у) – произвольное решение системы (6). Разделим первое уравнение на а, второе – на b, возводим оба уравнения в квадрат и складываем:

.

Т.е. любое решение (х, у) системы (6) удовлетворяет уравнению (4).

2) Обратно, пусть пара (х, у) является решением уравнения (4), т.е.

.

Из этого равенства следует, что точка с координатами
лежит на окружности единичного радиуса с центром в начале координат, т.е. является точкой тригонометрической окружности, которой соответствует некоторый угол
:

Из определения синуса и косинуса сразу же следует, что

,
, где
, откуда и следует, что пара (х, у) является решением системы (6), ч.т.д.

Теорема доказана.

Замечание. Эллипс можно получить в результате равномерного "сжатия" окружности радиуса а к оси абсцисс.

Пусть
– уравнение окружности с центром в начале координат. "Сжатие" окружности к оси абсцисс есть ни что иное, как преобразование координатной плоскости, осуществляемое по следующему правилу. Каждой точке М(х, у) поставим в соответствие точку этой же плоскости
, где
,
– коэффициент "сжатия".

При этом преобразовании каждая точка окружности "переходит" в другую точку плоскости, имеющую ту же самую абсциссу, но меньшую ординату. Выразим старую ординату точки через новую:

и подставим в уравнение окружности:

.

Отсюда получаем:

. (7)

Отсюда следует, что если до преобразования "сжатия" точка М(х, у) лежала на окружности, т.е. ее координаты удовлетворяли уравнению окружности, то после преображования "сжатия" эта точка "перешла" в точку
, координаты которой удовлетворяют уравнению эллипса (7). Если мы хотим получить уравнение эллипса с малой полуосью b, то нужно взять коэффициент сжатия

.

п.5. Касательная к эллипсу.

Теорема. Пусть
– произвольная точка эллипса

.

Тогда уравнение касательной к этому эллипсу в точке
имеет вид:

. (8)

Доказательство. Достаточно рассмотреть случай, когда точка касания лежит в первой или второй четверти координатной плоскости:
. Уравнение эллипса в верхней полуплоскости имеет вид:

. (9)

Воспользуемся уравнением касательной к графику функции
в точке
:

где
– значение производной данной функции в точке
. Эллипс в первой четверти можно рассматривать как график функции (8). Найдем ее производную и ее значение в точке касания:

,

. Здесь мы воспользовались тем, что точка касания
является точкой эллипса и поэтому ее координаты удовлетворяют уравнению эллипса (9), т.е.

.

Подставляем найденное значение производной в уравнение касательной (10):

,

откуда получаем:

Отсюда следует:

Разделим это равенство на
:

.

Осталось заметить, что
, т.к. точка
принадлежит эллипсу и ее координаты удовлетворяют его уравнению.

Аналогично доказывается уравнение касательной (8) в точке касания, лежащей в третьей или четвертой четверти координатной плоскости.

И, наконец, легко убеждаемся, что уравнение (8) дает уравнение касательной в точках
,
:

или
, и
или
.

Теорема доказана.

п.6. Зеркальное свойство эллипса.

Теорема. Касательная к эллипсу имеет равные углы с фокальными радиусами точки касания.

Пусть
– точка касания,
,
– фокальные радиусы точки касания, Р и Q – проекции фокусов на касательную, проведенную к эллипсу в точке
.

Теорема утверждает, что

. (11)

Это равенство можно интерпретировать как равенство углов падения и отражения луча света от эллипса, выпущенного из его фокуса. Это свойство получило название зеркального свойства эллипса:

Луч света, выпущенный из фокуса эллипса, после отражения от зеркала эллипса проходит через другой фокус эллипса.

Доказательство теоремы. Для доказательства равенства углов (11) мы докажем подобие треугольников
и
, в которых стороны
и
будут сходственными. Так как треугольники прямоугольные, то достаточно доказать равенство

. (12)

Так как по построению
– расстояние от фокуса до касательной L (см. рис.7),
. Воспользуемся формулой расстояния от точки до прямой на плоскости:

Так как уравнение касательной к эллипсу в точке
имеет вид

,

,

.

Здесь мы воспользовались формулами (5) для фокальных радиусов точки эллипса.

Теорема доказана.

Второе доказательство теоремы:

,
,
– нормальный вектор касательной L.

. Отсюда,
.

Аналогично находим,
и
, ч.т.д.

п.7. Директрисы эллипса.

Определение. Директрисами эллипса называются две прямые, которые в канонической для эллипса системе координат имеют уравнения

или
. (13)

Теорема. Пусть М – произвольная точка эллипса, , – ее фокальные радиусы, – расстояние от точки М до левой директрисы, – до правой. Тогда

, (14)

где – эксцентриситет эллипса.

Доказательство.

Пусть М(х, у) – координаты произвольной точки эллипса. Тогда

,
,

откуда и следуют равенства (14).

Теорема доказана.

п.8. Фокальный параметр эллипса.

Определение. Фокальным параметром эллипса называется длина перпендикуляра, восстановленного в его фокусе до пересечения с эллипсом.

Фокальный параметр принято обозначать буквой р.

Из определения следует, что фокальный параметр

.

Теорема. Фокальный параметр эллипса равен

. (15)

Доказательство. Так как точка N(–с; р) явяляется точкой эллипса
, то ее координаты удовлетворяют его уравнению:

.

Отсюда находим

,

откуда и следует (15).

Теорема доказана.

п.9. Второе определение эллипса.

Теорема из п.7. может служить определением эллипса.

Определение. Эллипсом называется ГМТ для которых отношение расстояния до фиксированной точки плоскости, называемой фокусом, к расстоянию до фиксированной прямой, называемой директрисой, есть величина постоянная меньше единицы и называемая его эксцентриситетом:

.

Разумеется, в этом случае, первое определение эооипса является теоремой, которую необходимо доказывать.