Кибернетический подход к определению информации. Кибернетический подход Искусственная нейронная сеть как вид информационной модели

Кибернетический подход к определению информации. Кибернетический подход Искусственная нейронная сеть как вид информационной модели

Необходимо отметить, что в рамках общей те­ории систем возникла новая область современной науки - кибернетика, как одно из ее ответвлений. Кибернетический подход решает системные задачи с помощью математических и иных формальных методов.

Это обусловило появление новых системных по­нятий, таких как «входы и выходы», «иерархия», «модель», «саморегуляцию», «вектор», «матрица» и др., с помощью которых можно описать практи­чески безграничное множество процессов.

Кибернетика возникла как наука о процессах и связях управления, которые строятся на основе определенной программы и представляют собой способ ее реализации. Это значит, что над функци­онирующей системой всегда есть нечто, заключаю­щее в себе в том или ином виде общую схему соответствующего процесса. Данное «нечто» и есть в собственном смысле система управления, где разнотипность (разнокачественность) связей объек­та обеспечивает многообразие форм управления.

Начальные идеи кибернетики были изложены в исторической статье А. Розенблата, Н. Вин ера, Дж. Бигеолоу «Поведение, целенаправленность и те­леология» (1943 г.). В ней впервые было показано принципиальное единство проблем связи и управле­ния в природе и технике. Основная мысль Н. Вине­ра, высказанная в его книге, изданной в 1948 г., «Кибернетика или управление и связь в животном и машине» - это то, что о живых организмах можно говорить на том же языке, что и о целена­правленных машинах. Возникает формальная об­щая схема, позволяющая не только говорить о по­ведении в терминах систем в целом, но и дающая возможность динамического объяснения этого по­ведения. Такая схема приводит к общему понятию управляемой (целенаправленной) системы, не за­висящему от того, существует ли такая система в «живом» виде или нет. Таким образом, кибернети­ка охватывает разные по качеству системы, не ин­тересуясь свойствами материала, из которого они сделаны, если только он не влияет на организа­цию. Далее, Винер показал, что как животные, так и машины могут быть включены в новый и более обширный класс вещей. Их отличительным свойством он считал наличие гомеостатических и управленческих систем, науку о которых он и назвал «кибернетикой» (искусством кормчего). Фун­кционирующие части правильно работающей ма­шины или организма поддерживают равновесие, гомеостаз всей системы. Итак, о животных (вклю­чая человека) и о машинах оказалось возможным говорить на одном языке, который годится для описания любых «целесообразных» систем.

Кибернетика при исследовании реальных сис­тем стремится не просто к описанию их с помощью формальных систем, а к тому, чтобы, используя такое описание, помочь понять (объяснить), как работают реальные системы. Обычно это делается путем построения эффективных и динамических моделей, с разбивкой способов их функционирова­ния в виде алгоритмических процедур. Особен­ностью моделирования является то, что в нем модели, в отличие от гипотез, не конкурируют, а дополняют друг друга. Этим они позволяют изу­чать многомерные явления с помощью совокупнос­ти маломерных представлений. С помощью ЭВМ строятся модели как вероятностные картины мира, вытесняющие детерминистические. Это означает, что, помимо действительного, исследователю ста­новится доступным и возможное, тесно не связан­ное с наблюдаемыми фактами. Данный момент носит эвристический характер: исследователь име­ет возможность рассмотреть гораздо больше ситу­ации, чем их существует в действительности, и прогнозировать варианты сценариев будущего.

При этом отрицательная обратная связь как бы заставляет поведение системы стремиться к предпи­санному пределу (моделям как прототипам) и, следо­вательно, нет ничего абсурдного или сверхъестествен­ного в том, что поведение системы определяется

скорее будущим, чем прошлым ее состоянием. При таком понимании телеология (целенаправленность) быстро перестает быть пугалом для биологических и социальных наук.

Кибернетический метод как интеллектуальная процедура познания действительности может рас­ сматриваться как метод аналогий. В качестве при­мера можно привести блок-схему 3, - применения данного метода при изучении моделей, предложенной А. Молем. На этой схеме, напоминающей блок-схему программы ЭВМ, отражены различные этапы кибернетического исследования. Последнее начинается с нахождения аналогии, на которую затем налагается определенное число ограничитель­ных условий, характеризующимися следующими особенностями.

1. Создатель модели начинает с нахождения умозрительной конструкции, образа некоторой ре­альности, и исследует, насколько он обоснован. Затем исследователь формулирует вытекающие из этого представления выводы и проверяет соответ­ствие хотя бы некоторых из них наблюдаемой реальности и фактам, собранным специалистами в данной области.

2. Исследователь переходит к установлению того, насколько рассматриваемая им аналогия далека от действительности. Он должен понять, почему она именно такова, какова она есть (недостаточно пол­ное соответствие реальным фактам, ложное и т. д.). Для этого исследователь должен интеллектуально

Дисциплинировать свое интуитивное мышление ­ввести экспликацию: истолкование, замещение не­точного образа, понятия, символа более точным.

3. Возведя рассматриваемый образ в ранг ана­логии (модель-аналогия), исследователь проверяет его: не обладают ли явления, которые он временно принял во внимание, столь большим «весом», что необходимо внести существенные поправки в образ основного явления. Таким путем он устанавливает степень эвристической ценности данной аналогии (ситуация проверки существенности). Если эта си­туация имеет место, то обнаруженная ценность яв­ляется свидетельством ценности лежащего в её основе образа.

4. Теперь исследователь устанавливает масшта­бы (например, статистические величины), при ко­торых данная аналогия является справедливой. При этом устанавливаются и пределы изменчивости этих величин (область валидности), за которыми исследуемое явление меняет характер и нуждается в других типах аналогий, предваряющих структур­ные исследования на других уровнях.

5. Далее исследователь развивает аналогию при­менительно к основной области. При этом на всех этапах он стремится свести описание к механиз­мам, реальные примеры которых ему известны и которые он в состоянии промоделировать во всех деталях. Исследователь как бы «очищает», упро­щает их и делает это, в частности, с помощью схем, графов того типа, которые применяются про­граммистами для выражения процедур, реализуе­мых на ЭВМ.

6. Формулировка и подробное описание предло­женной модели составляют первый результат, по­лучаемый при таком подходе. Последний служит интеграции разных понятий, «упрощению» мысли, благодаря которому большое число разрозненных сводится к небольшому числу элементарных сущ­ностей в соответствии с принципом Оккама: «Сущ­ности не следует увеличивать без необходимости». Применяемые модели (математические, графичес­кие) обеспечивают существенное сжатие (кодиро­вание) информации и возможность "её использова­ния для описания широкого класса явлений. Такое описание является, наконец, средством качествен­ной характеристики изучаемого феномена и сред­ством воздействия на него, т. е. орудием овладе­ния действительностью.

7. Вместе с тем рассмотрение модели сразу ста­вит некоторые вопросы, требующие ответов и уточ­нений. Это способствует дальнейшей эксперимен­тальной работе, новому поиску фактов.

Итак, стремление к созданию обобщающих те­орий и учений обусловило появление системного подхода, связанного с переходом к структурно-функ­циональному изучению различных социальных систем с точки зрения выполняемых ими функций по отношению к более широкому целому. Этим были предопределены два его основных принципа.

1. Выделение структуры объекта как некоего инварианта, характеризующего принципы строения этого объекта.

2. Функциональное описание этой структуры.

При этом заслуга Т. Парсонса заключается в том, что он связал данные принципы для изучения социальных систем, развил кибернетическую идею общего в универсуме.

Кибернетика - это наука о процессах управления в живых и искусственных системах и способах обработки информации. Кибернетика изучает процессы взаимодействия объектов и субъектов управления, прямые и обратные информационные и управленческие взаимосвязи между ними. Один из основателей теории кибернетики Н. Винер обосновал положение о единстве принципов управления в живых и искусственных системах, если их рассматривать с позиций прямой связи, но которой передается управляющая информация, и обратной связи, но которой объект управления сообщает о своем состоянии и результатах управления (рис. 2.4).

Рис . 2.4.

Важнейшей целью кибернетики является предотвращение хаоса на основе процессов упорядочения и регулирования. Основы кибернетики были заложены Н. Винером, К. Шенноном, С. А. Лаврентьевым и многими другими учеными. Развитие кибернетики было тесно связано с развитием теории сложных систем, возникшей в начале XX в. в работах А. А. Богданова (Малиновского), Людвига фон Берталанфи, Р. Веллмана, С. Бира, В. М. Глушкова и многих других ученых.

Важнейшими принципами кибернетики являются принципы обратной связи объекта и субъекта управления, обеспечения устойчивости на основе регулирования, иерархичности и структурированности органов управления, синергии, целевой направленности управления и эффективности.

В кибернетике сформулировано понятие обратной связи, означающее получение системой информации о результатах ее взаимодействия с окружающей средой, а также о работе ее подсистем и элементов. Эта информация используется субъектом управления для принятия решений о корректировке и изменении внутренних и внешних процессов для повышения эффективности объекта управления. Появление кибернетики вызвало быстрое развитие электронно-информационных систем, глубокие изменения в управлении и экономике и дало основание назвать ее второй промышленной революцией (первая промышленная революция произошла в начале XIX в.). Кибернетические модели отражают сложные процессы взаимодействия участников процесса управления и взаимосвязи между ними, которые могут носить сложный характер, описываются математическими моделями. Кибернетические модели описывают сущностные характеристики процессов управления. На их основе разрабатываются другие модели, в том числе модели организационных изменений, информационные модели, модели поведения и др., отражающие развитие и взаимодействие участников процессов управления. Кибернетические модели создали основу для возникновения новых типов моделей - информационных, технических, системных и др. По мере развития средств обработки информации они постепенно стали уступать место информационным моделям.

В настоящее время кибернетические модели разрабатываются в основном при моделировании технических систем и описании принципиальных взаимосвязей в системах управления. Сегодня вместо них в основном применяют информационные модели, реализуемые в виде информационных систем управления с помощью информационного подхода.

Информационный подход тесно связан с кибернетическим и исходит из универсальности процессов преобразования информации в системах управления и необходимости создания информационных моделей системы «субъект - объект управления».

Типичный информационный процесс включает этапы сбора, обработки, передачи, хранения информации, контроля информационных процессов, защиты информации.

Информационные системы предприятий возникли в середине прошлого века. За рубежом они были реализованы сначала в виде систем MRP (англ. Material Requirements Planning - планирование потребности в материалах в основном в натуральном выражении), затем в виде MRP II (Manufacturing Resource Planning - планирование производственных ресурсов), которая существенно расширила возможности предыдущей системы, включив планирование ряда финансово-экономических показателей. Система MRP II обеспечивает планирование ресурсов предприятия на основе стандарта, содержащего следующие функции: планирование продаж и производства, потребностей в материалах, кадрах, производственных мощностях, финансах, других ресурсах, а также контроль и оценка результатов.

Ее сущность заключается в том, что MRP II задает принципы детального планирования производства предприятия, включает учет заказов, планирование загрузки производственных мощностей, потребности во всех ресурсах производства (материалы, сырье, комплектующие, оборудование, персонал), производственных затрат, моделирование хода производства, его учет, планирование выпуска готовых изделий, оперативное корректирование плана и производственных заданий .

В дальнейшем эта система получила развитие в виде информационной системы ERP (Enterprise Resource Planning), направленной на комплексную автоматизацию всего предприятия путем согласования действий его подразделений, разработки бизнес-процедур для менеджеров. На базе этой системы реализуется много функций, в том числе планирование выпуска продукции, складской учет и планирование закупок, учет основных средств, финансовое планирование, учет кадров и др.

В СССР в течение многих лет разрабатывались и применялись типовые комплексные автоматизированные системы управления (АСУ), во многом аналогичные приведенным выше и включающие: автоматизированные системы управления технологическими процессами (АСУТП); автоматизированные системы управления предприятиями (АСУП) в целом; отраслевые системы управления (ОЛСУ). На ряде российских производств АСУТП и АСУП продолжают работать и в наше время.

Автоматизация информационной модели управления также осуществляется различными информационными системами, например системами SAP, Oracle и др.

  • См.: URL: http://ru.wikipedia.org/wiki/MRP_II 2014

Кибернетический подходподразумевает наличие заранее определенной цели, к которой система стремится самостоятельно, самоорганизуется вокруг нее

Долгое время в философии господствовала точка зрения на самоорганизацию, как на явление, присущее только живым системам. Кибернетическое понимание «управления в животном и машине» как понимание централизованной иерархической структуры, где информация «снизу» поступает лишь как конечный результат по каналу обратной связи, а решения принимаются только «наверху», оказалось не способным отразить сложность функционирования реальных систем, а также создать хорошие объяснительные модели процессов самоорганизации, происходящие в сложных системах

Кибернетический подход подразумевает наличие заранее определенной цели, к которой система стремится самостоятельно, самоорганизуется вокруг нее.

Кибернетика занимается разработкой алгоритмов и методов, позволяющих управлять системой для того, чтобы та функционировала заранее заданным образом

Кибернетический аспект управления экономической системой предполагает переработку социально-экономической информации, принятие решений овоздействии на систему и реализацию этих решений. При данном подходе управление кибернетической системой включает два элемента: определение траектории состояния системы (формирование цели и указание путей ее достижения) и удержание системы на этой траектории путем регулирования с помощью обратных связей. Соответственно в подсистеме управления выделяются два блока: блок определения целей и блок регулирования. Существуют три основных вида управления: жесткое (задана жесткая программа);мягкое(регулирование с помощью обратных связей);самоуправлениеилисаморегулирование(самонастройка или самоорганизация).

В кибернетике понятие самоорганизующихся систем, как правило, связывают со способностью систем к адаптации в условиях постоянно изменяющихся внешних и внутренних факторов.

Само организующаяся система -- это кибернетическая адаптирующаяся система, в которой накопление опыта, запоминание и структуризация информации выражается в изменении структуры системы и уровня ее организации.

Адаптация системы происходит за счет различных факторов, которые могут действовать самостоятельно или сообща (кооперативно). Исходя из этого можно следующим образом классифицировать самоорганизующиеся системы:

  • *Самонастраивающаяся система -- такая кибернетическая адаптирующаяся система, в которой накопление опыта (запоминание информации) выражается в изменении тех или иных ее параметров, существенных для цели системы. Например, предприятие расширяет выпуск продукции вслед за увеличением спроса: в соответствии с изменениями внешней среды изменяется способ функционирования системы.
  • *Саморазвивающаяся система--такая кибернетическая адаптирующаяся система, которая самостоятельно вырабатывает цели своего развития и критерии их достижения, изменяет свои параметры, структуру и другие характеристики в заданном направлении.
  • *Самообучающаяся система - такая кибернетическая адаптирующаяся система, которая в процессе развития проходит процесс обучения, накапливая опыт, обладает способностью самостоятельно искать критерии качества своего функционирования.

Как видим, одна и та же система может демонстрировать самоорганизацию в разных смыслах. Любой организационной системе, где элементы -- люди, свойственны самоорганизация и самообучение.

Такая система сама ищет пути содружества и соорганизации. Особенно эти эффекты заметны при гибкой системе управления.

Доказано, что чем меньше регламентирована программа и структура управляемой подсистемы, тем выше способность приспособления управляющей подсистемы к реальным условиям.

В ряде случаев самоорганизация эффективнее, чем формальная целенаправленная организация и управление. Процесс самоорганизации систем требует определенной свободы, определенного поля, выбора, «хаоса возможностей». Вся организационно-управленческая деятельность должна быть направлена на создание управляющих систем, способных самостоятельно, в ходе процесса управления строить собственный алгоритм в состояние системы результате адаптации и обучения. Такое управление, в отличие от управления по заранее заданному жесткому алгоритму, называют адаптивным управлением. Задача адаптивного управления состоит в поиске наилучшей стратегии по отношению к цели управления.

Кибернетическую схему адаптивного управления поведением системы можно представить в виде замкнутого контура связи (рис. 1.1).

Рис.1.1 Кибернетическая схема управления поведением системы.

    Турчин В. Ф.

    Для кибернетика метафизика не может быть просто сторонним увлечением. Нам необходимо создание универсальных моделей мира, которые позволили бы нам, например, интерпретировать человеческую мысль, выраженную на естественном языке. От чего можно оттолкнуться в столь смелом начинании? Какие понятия должны быть положены в основу? Метафизика должна ответить на эти вопросы.

    Турчин В. Ф.

    Философия призвана отвечать на такие основополагающие для каждого разумного создания вопросы как: "Кто я?", "Откуда я пришел и куда иду?", "Сколь истинно мое знание?", "Какова, в конечном счете, природа вещей?", "Что есть добро и что есть зло?". Каждое время дает свои собственные ответы на эти вопросы. Эти ответы значительно подвержены влиянию текущего состояния знания и производства. Наша философия - следствие возникновения эволюционной теории в конце 19-го века и кибернетики в середине 20-го. Это легко можно увидеть и в методе, с которым мы подходим к философским проблемам, и в ответах, которые мы предлагаем.

    Норберт Винер

    «Кибернетика» - известная книга выдающегося американского математика Норберта Винера (1894-1964), сыгравшая большую роль в развитии современной науки и давшая имя одному из важнейших ее направлений. Настоящее русское издание является полным переводом второго американского издания, вышедшего в 1961 г. и содержащего важные дополнения к первому изданию 1948 г. Читатель также найдет в приложениях переводы некоторых статей и интервью Винера, включая последнее, данное им незадолго до смерти для журнала «Юнайтед Стэйтс Ньюс энд Уорлд Рипорт». Книга, написанная своеобразным свободным стилем, затрагивает широкий круг проблем современной науки, от сферы наук технических до сферы наук социальных и гуманитарных. В центре - проблематика поведения и воспроизведения (естественного и искусственного) сложных управляющих и информационных систем в технике, живой природе и обществе. Автор глубоко озабочен судьбой науки и ученых в современном мире и резко осуждает использование научного могущества для эксплуатации и войны.

    Сэм Харрис

    Стоит ли бояться сверхразумного искусственного интеллекта? Нейробиолог и философ Сэм Харрис считает, что очень даже стоит. По его мнению, мы стоим на пороге создания сверхразумных машин, при этом не решив множество проблем, которые могут возникнуть при создании ИИ, который потенциально сможет обращаться с людьми так же, как те с муравьями.

    Алексей Потапов

    Искусственный интеллект всегда рассматривался в рамках «биологической метафоры» - как аналог человеческого интеллекта. Однако создаваемые сейчас искусственные интеллектуальные системы, которые превосходят человека при решении самых разных задач, нисколько не похожи на человека. Это относится даже к таким биологически инспирированным подходам, как искусственные нейронные сети. Я расскажу о том, как сейчас ученые в области ИИ определяют понятие интеллекта, какие проблемы стоят на пути построения мыслящих машин, и нужна ли или вредна для их преодоления «биологическая метафора».

    Евгений Путин

    Евгений Путин, аспирант кафедры «Компьютерные Технологии» университета ИТМО. В рамках диссертации Евгений исследует проблемы интеграции концепции выбора признаков в математический аппарат искусственных нейронных сетей. Евгений расскажет о том, как устроены нейронные сети, что они могут делать сейчас, на что будут способны в недалеком будущем и ждать ли прихода Скайнета.

    Карл Р. Поппер

    Эпистемология - английский термин, обозначающий теорию познания, прежде всего научного познания. Это теория, которая пытается объяснить статус науки и ее рост. Дональд Кэмпбелл назвал мою эпистемологию эволюционной, потому что я смотрю на нее как на продукт биологической эволюции, а именно – дарвиновской эволюции путем естественного отбора. Основными проблемами эволюционной эпистемологии я считаю следующие: эволюция человеческого языка и роль, которую он играл и продолжает играть в росте человеческого знания; понятия (ideas) истинности и ложности; описания положений дел (states of affaires) и способ, каким язык отбирает положения дел из комплексов фактов, составляющих мир, то есть действительность.

    Сергей Марков

    На лекции мы обсудим вторую весну искусственного интеллекта в цифрах и фактах, ключевые работы в области искусственного интеллекта и машинного обучения в 2017 году. Поговорим о распознавании изображений, речи, обработке естественного языка и о других направлениях исследований; обсудим новые модели и оборудование 2017 года. Также поговорим о применении ИИ и машинного обучения в бизнесе, медицине и науке, а также обсудим, чего мы ждем от искусственного интеллекта и машинного обучения в 2018 году.

    Вячеслав Дубынин, Алексей Семихатов

    Чем всё-таки мозг отличается от компьютера и до какой степени можно их сравнивать? Если мозг намного медленнее современной вычислительной техники, то почему же до сих пор не удается создать компьютер настолько же умный, как и мозг? Разбирают все по-порядку Вячеслав Дубынин - доктор биологических наук, профессор кафедры физиологии человека и животных Биологического факультета МГУ, ведущий Алексей Семихатов - доктор физико-математических наук, ведущий научный сотрудник ФИАН.

    Последнее время все большее внимание ученых привлекает новое направление исследований - эмоциональные вычисления (Affective computing). Роль эмоций в эволюции естественного интеллекта велика, искусственный интеллект пока многое упускает в этом отношении, в нем невозможно воплотить многие явления, связанные с эмоциональной картиной, с эмоциональным состоянием человека. Ученым из области ИИ активно помогают когнитивные нейробиологи, психологи и философы.

5.2. Кибернетический подход

Кибернетика – наука об общих законах управления в природе, обществе, живых организмах и машинах, изучающая информационные процессы, связанные с управлением динамических систем. Кибернетический подход – исследование системы на основе принципов кибернетики, в частности с помощью выявления прямых и обратных связей, изучения процессов управления, рассмотрения элементов системы как неких «черных ящиков » (систем, в которых исследователю доступна лишь их входная и выходная информация, а внутреннее устройство может быть и неизвестно).

У кибернетики и общей теории систем есть много общего, например, представление объекта исследования в виде системы, изучение структуры и функций систем, исследование проблем управления и др. Но в отличие от теории систем кибернетика практикует информационный подход к исследованию процессов управления, который выделяет и изучает в объектах исследования различные виды потоков информации, способы их обработки, анализа, преобразования, передачи и т.д. Под управлением в самом общем виде понимается процесс формирования целенаправленного поведения системы посредством информационного воздействия, вырабатываемого человеком или устройством. Выделяют следующие задачи управления:
· задача целеполагания – определение требуемого состояния или поведения системы;
· задача стабилизации – удержание системы в существующем состоянии в условиях возмущающих воздействий;
· задача выполнения программы – перевод системы в требуемое состояние в условиях, когда значения управляемых величин изменяются по известным детерминированным законам;
· задача слежения – обеспечение требуемого поведения системы в условиях, когда законы изменения управляемых величин неизвестны или изменяются;
· задача оптимизации – удержание или перевод системы в состояние с экстремальными значениями характеристик при заданных условиях и ограничениях.

С точки зрения кибернетического подхода управление ЛС рассматривается как совокупность процессов обмена, обработки и преобразования информации. Кибернетический подход представляет ЛС как систему с управлением (рис.5.1), включающую три подсистемы: управляющую систему, объект управления и систему связи.

Рис. 5.1. Кибернетический подход к описанию ЛС

Управляющая система совместно с системой связи образует систему управления. Система связи включает канал прямой связи , по которому передается входная информация {x} и канал обратной связи , по которому к управляющей системе передается информация о состоянии объекта управления {y}. Информация об управляемом объекте и внешней среде воспринимается управляющей системой, перерабатывается в соответствии с той или иной целью управления и в виде управляющих воздействий передается на объект управления. Использование понятия обратной связи является отличительной чертой кибернетического подхода.

Основными группами функций системы управления являются:
· функции принятия решений или функции преобразования содержания информации являются главными в системе управления, выражаются в преобразовании содержания информации о состоянии объекта управления и внешней среды в управляющую информацию;
· рутинные функции обработки информации не изменяют смысла информации, а охватывают лишь учет, контроль, хранение, поиск, отображение, тиражирование, преобразование формы информации;
· функции обмена информацией связаны с доведением выработанных решений до объекта управлений и обменом информации между лицами, принимающими решение (сбор, передача информации текстовой, графической, табличной, электронной и др. по телефону, факсу, локальным или глобальным сетям передачи данных и т.д.).

Применение кибернетического подхода к логистике требует описания основных свойств ЛС при помощи математических моделей. Это позволяет разрабатывать и автоматизировать алгоритмы оптимизации кибернетической системы управления.