Дисперсная среда примеры. Дисперсионная среда Дисперсная фаза Примеры некоторых природных и бытовых дисперсных систем Газ ЖидкостьТуман, попутный газ с капельками нефти, карбюраторная. Название и пример

Дисперсная среда примеры. Дисперсионная среда Дисперсная фаза Примеры некоторых природных и бытовых дисперсных систем Газ ЖидкостьТуман, попутный газ с капельками нефти, карбюраторная. Название и пример

Чистые вещества в природе встречаются очень редко. Смеси разных веществ в различных агрегатных состояниях могут образовывать гетерогенные и гомогенные системы - дисперсные системы и растворы.

То вещество, которое присутствует в меньшем количестве и распределено в объеме другого, называют дисперсной фазой. Она может состоять из нескольких веществ.

Вещество, присутствующее в большем количестве, в объеме которого распределена дисперсная фаза, называют дисперсионной средой. Между ней и частицами дисперсной фазы существует поверхность раздела, поэтому дисперсные системы называют гетерогенными (неоднородными).

И дисперсионную среду, и дисперсную фазу могут представлять вещества, находящиеся в различных агрегатных состояниях - твердом, жидком и газообразном.

В зависимости от сочетания агрегатного состояния дисперсионной среды и дисперсной фазы можно выделить 8 видов таких систем (табл. 11).

Таблица 11
Примеры дисперсных систем


По величине частиц веществ, составляющих дисперсную фазу, дисперсные системы делят на грубодисперсные (взвеси) с размерами частиц более 100 нм и тонкодисперсные (коллоидные растворы или коллоидные системы) с размерами частиц от 100 до 1 нм. Если же вещество раздроблено до молекул или ионов размером менее 1 нм, образуется гомогенная система - раствор. Она однородна (гомогенна), поверхности раздела между частицами дисперсной фазы и средой нет.

Уже беглое знакомство с дисперсными системами и растворами показывает, насколько они важны в повседневной жизни и в природе (см. табл. 11).

Судите сами: без нильского ила не состоялась бы великая цивилизация Древнего Египта; без воды, воздуха, горных пород и минералов вообще бы не существовала живая планета - наш общий дом - Земля; без клеток не было бы живых организмов и т. д.

Классификация дисперсных систем и растворов представлена на схеме 2.

Схема 2
Классификация дисперсных систем и растворов

Взвеси

Взвеси - это дисперсные системы, в которых размер частиц фазы более 100 нм. Это непрозрачные системы, отдельные частицы которых можно заметить невооруженным глазом. Дисперсная фаза и дисперсионная среда легко разделяются отстаиванием. Такие системы разделяют на три группы:

  1. эмульсии (и среда, и фаза - нерастворимые друг в друге жидкости). Это хорошо известные вам молоко, лимфа, водоэмульсионные краски и т. д.;
  2. суспензии (среда - жидкость, а фаза - нерастворимое в ней твердое вещество). Это строительные растворы (например, «известковое молоко» для побелки), взвешенный в воде речной и морской ил, живая взвесь микроскопических живых организмов в морской воде - планктон, которым питаются гиганты киты, и т. д.;
  3. аэрозоли - взвеси в газе (например, в воздухе) мелких частиц жидкостей или твердых веществ. Различают пыли, дымы, туманы. Первые два вида аэрозолей представляют собой взвеси твердых частиц в газе (более крупные частицы в пылях), последний - взвесь мелких капелек жидкости в газе. Например, природные аэрозоли: туман, грозовые тучи - взвесь в воздухе капелек воды, дым - мелких твердых частиц. А смог, висящий над крупнейшими городами мира, также аэрозоль с твердой и жидкой дисперсной фазой. Жители населенных пунктов вблизи цементных заводов страдают от всегда висящей в воздухе тончайшей цементной пыли, образующейся при размоле цементного сырья и продукта его обжига - клинкера. Аналогичные вредные аэрозоли - пыли - имеются и в городах с металлургическими производствами. Дым заводских труб, смоги, мельчайшие капельки слюны, вылетающие изо рта больного гриппом, также вредные аэрозоли.

Аэрозоли играют важную роль в природе, быту и производственной деятельности человека. Скопления облаков, обработка полей химикатами, нанесение лакокрасочных покрытий при помощи пульверизатора, распыление топлива, выработка сухих молочных продуктов, лечение дыхательных путей (ингаляция) - примеры тех явлений и процессов, где аэрозоли приносят пользу.

Аэрозоли - туманы над морским прибоем, вблизи водопадов и фонтанов, возникающая в них радуга доставляет человеку радость, эстетическое удовольствие.

Для химии наибольшее значение имеют дисперсные системы, в которых средой является вода.

Коллоидные системы

Коллоидные системы - это такие дисперсные системы, в которых размер частиц фазы от 100 до 1 нм. Эти частицы не видны невооруженным глазом, и дисперсная фаза и дисперсионная среда в таких системах отстаиванием разделяются с трудом.

Их подразделяют на золи (коллоидные растворы) и гели (студни).

1. Коллоидные растворы , или золи . Это большинство жидкостей живой клетки (цитоплазма, ядерный сок - кариоплазма, содержимое органоидов и вакуолей) и живого организма в целом (кровь, лимфа, тканевая жидкость, пищеварительные соки, гуморальные жидкости и т. д.). Такие системы образуют клеи, крахмал, белки, некоторые полимеры.

Коллоидные растворы могут быть получены в результате химических реакций; например, при взаимодействии растворов силикатов калия или натрия («растворимого стекла») с растворами кислот образуется коллоидный раствор кремниевой кислоты. Золь образуется и при гидролизе хлорида железа (III) в горячей воде. Коллоидные растворы внешне похожи на истинные растворы. Их отличают от последних по образующейся «светящейся дорожке» - конусу при пропускании через них луча света. Это явление называют эффектом Тиндаля. Более крупные, чем в истинном растворе, частицы дисперсной фазы золя отражают свет от своей поверхности, и наблюдатель видит в сосуде с коллоидным раствором светящийся конус. В истинном растворе он не образуется. Аналогичный эффект, но только для аэрозольного, а не жидкого коллоида, вы можете наблюдать в кинотеатрах при прохождении луча света от киноаппарата через воздух кинозала.

Частицы дисперсной фазы коллоидных растворов нередко не оседают даже при длительном хранении из-за непрерывных соударений с молекулами растворителя за счет теплового движения. Они не слипаются и при сближении друг с другом из-за наличия на их поверхности одноименных электрических зарядов. Но при определенных условиях может происходить процесс коагуляции.

Коагуляция - явление слипания коллоидных частиц и выпадения их в осадок - наблюдается при нейтрализации зарядов этих частиц, когда в коллоидный раствор добавляют электролит. При этом раствор превращается в суспензию или гель. Некоторые органические коллоиды коагулируют при нагревании (клей, яичный белок) или при изменении кислотно-щелочной среды раствора.

2. Вторая подгруппа коллоидных систем - это гели , или студни у представляющие собой студенистые осадки, образующиеся при коагуляции золей. К ним относят большое количество полимерных гелей, столь хорошо известные вам кондитерские, косметические и медицинские гели (желатин, холодец, желе, мармелад, торт-суфле «Птичье молоко») и конечно же бесконечное множество природных гелей: минералы (опал), тела медуз, хрящи, сухожилия, волосы, мышечная и нервная ткани и т. д. Историю развития жизни на Земле можно одновременно считать историей эволюции коллоидного состояния вещества. Со временем структура гелей нарушается - из них выделяется вода. Это явление называют синерезисом.

Дисперсионные системы можно разделить по размеру частиц дисперсионной фазы. Если размер частиц составляет меньше одного нм – это молекулярно - ионные системы, от одного до ста нм - коллоидные, и более ста нм - грубодисперсные. Группу молекулярно дисперсных систем представляют растворы. Это однородные системы, которые состоят из двух или более веществ и являются однофазными. К ним относятся газ, твердое вещество или растворы. В свою очередь эти системы можно разделить на подгруппы:
- Молекулярные. Когда органические вещества, такие как глюкоза, соединяются с неэлектролитами. Такие растворы назвали истинными для того, чтобы можно было отличать от коллоидных. К ним относятся растворы глюкозы, сахарозы, спиртовые и другие.
- Молекулярно-ионные. В случае взаимодействия между собой слабых электролитов. В эту группу входят кислотные растворы, азотистые, сероводородные и другие.
- Ионные. Соединение сильных электролитов. Яркие представители - это растворы щелочей, солей и некоторых кислот.

Коллоидные системы

Коллоидные системы - это микрогетерогенные системы, в которых размеры коллоидных частиц варьируют от 100 до 1 нм. Они длительное время могут не выпадать в осадок за счет сольватной ионной оболочки и электрического заряда. При распределении в среде коллоидные растворы заполняют равномерно весь объем и делятся на золи и гели, которые в свою очередь представляют собой осадки в виде студня. К ним относятся раствор альбумина, желатина, коллоидные растворы серебра. Холодец, суфле, пудинги - это яркие коллоидной систем, встречающихся в повседневной жизни.

Грубодисперсные системы

Непрозрачные системы или взвеси, в которых мелкие ингредиенты частицы видны невооруженным глазом. В процессе отстаивания дисперсная фаза легко отделяется от дисперсной среды. Они подразделяются на суспензии, эмульсии, аэрозоли. Системы, в которых в жидкой дисперсионной среде размещаются твердое вещество с более крупными частицами, называются суспензиями. К ним относятся водные растворы крахмала и глины. В отличие от суспензий, эмульсии получаются в результате смешивания двух жидкостей, в которых одна капельками распределяется в другой. Примером эмульсии является смесь масла с водой, капельки жира в молоке. Если мелкие твердые или жидкие частицы распределяется в газе - это аэрозоли. По сути аэрозоль - это суспензия в газе. Одним из представителей аэрозоля на основе жидкости является туман - это большое количество мелких водяных капелек, взвешенных в воздухе. Твердотельный аэрозоль – дым или пыль - множественное скопление мелких твердых частиц также взвешенных в воздухе.

>> Химия: Дисперсные системы и растворы

Чистые вещества в природе встречаются очень редко. Смеси разных веществ в различных агрегатных состояниях могут образовывать гетерогенные и гомогенные системы - дисперсные системы и растворы.

Дисперсными называют гетерогенные системы, в которых одно вещество в виде очень мелких частиц равномерно распределено в объеме другого.

То вещество, которое присутствует в меньшем количестве и распределено в объеме другого, называют дисперсной фазой. Она может состоять из нескольких веществ.

Вещество, присутствующее в большем количестве, в объеме которого распределена дисперсная фаза, называют дисперсионной средой. Между ней и частицами дисперсной фазы существует поверхность раздела, поэтому дисперсные системы называют гетерогенными (неоднородными).

И дисперсионную среду, и дисперсную фазу могут представлять вещества, находящиеся в различных агрегатных состояниях - твердом, жидком и газообразном.

В зависимости от сочетания агрегатного состояния дисперсионной среды и дисперсной фазы можно выделить 9 видов таких систем (табл. 9).

По величине частиц веществ, составляющих дисперсную фазу, дисперсные системы делят на грубодисперсные (взвеси) с размерами частиц более 100 нм и тонкодисперсные (коллоидные растворы или коллоидные системы) с размерами частиц от 100 до 1 нм. Если же вещество раздроблено до молекул или ионов размером менее 1 нм, образуется гомогенная система - раствор. Она однородна (гомогенна), поверхности раздела между частицами и средой нет.

Уже беглое знакомство с дисперсными системами и растворами показывает, насколько они важны в повседневной жизни и в природе (табл. 9).

Классификация дисперсных систем и растворов представлена на схеме 1.

Судите сами: без нильского ила не состоялась бы великая цивилизация Древнего Египта ; без воды, воздуха, горных пород и минералов вообще бы не существовала живая планета - наш общий дом - Земля; без клеток не было бы живых организмов и т. д.

Взвеси

Взвеси - это дисперсные системы, в которых размер частиц фазы более 100 нм. Это непрозрачные системы, отдельные частицы которых можно заметить невооруженным глазом. Дисперсная фаза и дисперсионная среда легко разделяются отстаиванием. Такие системы разделяют на:

1) эмульсии (и среда, и фаза - нерастворимые друг в друге жидкости). Это хорошо известные вам молоко, лимфа, водоэмульсионные краски и т. д.;

2) суспензии (среда - жидкость, а фаза - нерастворимое в ней твердое вещество). Это строительные растворы (например, «известковое молоко» для побелки), взвешенный в воде речной и морской ил, живая взвесь микроскопических живых организмов в морской воде - планктон , которым питаются гиганты-киты, и т. д.;

3) аэрозоли - взвеси в газе (например, в воздухе) мелких частиц жидкостей или твердых веществ. Различают пыли, дымы, туманы. Первые два вида аэрозолей представляют собой взвеси твердых частиц в газе (более крупные частицы в пылях), последний - взвесь мелких капелек жидкости в газе. Например, природные аэрозоли: туман, грозовые тучи - взвесь в воздухе капелек воды, дым - мелких твердых частиц. А смог, висящий над крупнейшими городами мира, также аэрозоль с твердой и жидкой дисперсной фазой. Жители населенных пунктов вблизи цементных заводов страдают от всегда висящей в воздухе тончайшей цементной пыли, образующейся при размоле цементного сырья и продукта его обжига - клинкера. Аналогичные вредные аэрозоли - пыли - имеются и в городах с металлургическими производствами. Дым заводских труб, смоги, мельчайшие капельки слюны, вылетающие изо рта больного гриппом, также вредные аэрозоли.

Аэрозоли играют важную роль в природе, быту и производственной деятельности человека. Скопления облаков, обработка полей химикатами, нанесение лакокрасочных покрытий при помощи пульверизатора, распыление топлив, выработка сухих молочных продуктов, лечение дыхательных путей (ингаляция) - примеры тех явлений и процессов, где аэрозоли приносят пользу. Аэрозоли - туманы над морским прибоем, вблизи водопадов и фонтанов, возникающая в них радуга доставляет человеку радость, эстетическое удовольствие.

Для химии наибольшее значение имеют дисперсные системы, в которых средой является вода и жидкие растворы.

Природная вода всегда содержит растворенные вещества. Природные водные растворы участвуют в процессах почвообразования и снабжают растения питательными веществами. Сложные процессы жизнедеятельности, происходящие в организмах человека и животных, также протекают в растворах. Многие технологические процессы в химической и других отраслях промышленности, например получение кислот, металлов, бумаги, соды, удобрений, протекают в растворах.

Коллоидные системы

Коллоидные системы - это такие дисперсные системы, в которых размер частиц фазы от 100 до 1 нм. Эти частицы не видны невооруженным глазом, и дисперсная фаза и дисперсионная среда в таких системах отстаиванием разделяются с трудом.

Их подразделяют на золи (коллоидные растворы) и гели (студни).

1. Коллоидные растворы, или золи. Это большинство жидкостей живой клетки (цитоплазма, ядерный сок - кариоплазма, содержимое органоидов и вакуолей) и живого организма в целом (кровь, лимфа, тканевая жидкость, пищеварительные соки, гуморальные жидкости и т. д.). Такие системы образуют клеи, крахмал , белки, некоторые полимеры.

Коллоидные растворы могут быть получены в результате химических реакций; например, при взаимодействии растворов силикатов калия или натрия («растворимого стекла») с растворами кислот образуется коллоидный раствор кремниевой кислоты. Золь образуется и при гидролизе хлорида желе-за(Ш) в горячей воде. Коллоидные растворы внешне похожи на истинные растворы. Их отличают от последних по образующейся «светящейся дорожке» - конусу при пропускании через них луча света. Это явление называют эффектом Тин-даля. Более крупные, чем в истинном растворе, частицы дисперсной фазы золя отражают свет от своей поверхности, и наблюдатель видит в сосуде с коллоидным раствором светящийся конус. В истинном растворе он не образуется. Аналогичный эффект, но только для аэрозольного, а не жидкого коллоида, вы можете наблюдать в кинотеатрах при прохождении луча света от киноаппарата через воздух кинозала.

Частицы дисперсной фазы коллоидных растворов нередко не оседают даже при длительном хранении из-за непрерывных соударений с молекулами растворителя за счет теплового движения. Они не слипаются и при сближении друг с другом из-за наличия на их поверхности одноименных электрических зарядов. Но при определенных условиях может происходить процесс коагуляции.

Коагуляция - явление слипания коллоидных частиц и выпадения их в осадок - наблюдается при нейтрализации за--рядов этих частиц, когда в коллоидный раствор добавляют электролит. При этом раствор превращается в суспензию или гель. Некоторые органические коллоиды коагулируют при нагревании (клей, яичный белок) или при изменении кислотно-щелочной среды раствора.

2. Вторая подгруппа коллоидных систем - это гели , или студни, представляющие собой студенистые осадки, образующиеся при коагуляции золей. К ним относят большое количество полимерных гелей, столь хорошо известные вам кондитерские, косметические и медицинские гели (желатин, холодец, желе, мармелад, торт «Птичье молоко») и конечно же бесконечное множество природных гелей: минералы (опал), тела медуз, хрящи, сухожилия, волосы, мышечная и нервная ткани и т. д. Историю развития жизни на Земле можно одновременно считать историей эволюции коллоидного состояния вещества. Со временем структура гелей нарушается - из них выделяется вода. Это явление называют синерезисом.

Растворы

Раствором называют гомогенную систему, состоящую из двух и более веществ.

Растворы всегда однофазны, то есть представляют собой однородный газ, жидкость или твердое вещество. Это связано с тем, что одно из веществ распределено в массе другого в виде молекул, атомов или ионов (размер частиц менее 1 нм).

Растворы называют истинными , если требуется подчеркнуть их отличие от коллоидных растворов.

Растворителем считают то вещество, агрегатное состояние которого не изменяется при образовании раствора. Например, вода в водных растворах поваренной соли, сахара, углекислого газа. Если же раствор образовался при смешении газа с газом, жидкости с жидкостью и твердого вещества с твердым, растворителем считают тот компонент, которого больше в растворе. Так,воздух - это раствор кислорода, благородных газов, углекислого газа в азоте (растворитель). Столовый уксус, в котором содержится от 5 до 9% уксусной кислоты, представляет собой раствор этой кислоты в воде (растворитель - вода). Но в уксусной эссенции роль растворителя играет уксусная кислота, так как ее массовая доля составляет 70- 80%, следовательно, это раствор воды в уксусной кислоте.

При кристаллизации жидкого сплава серебра и золота можно получить твердые растворы разного состава.

Растворы подразделяют на:

Молекулярные - это водные растворы неэлектролитов - органических веществ (спирта, глюкозы, сахарозы и т. д.);

Молекулярно-ионные - это растворы слабых электролитов (азотистой, сероводородной кислот и др.);

Ионные - это растворы сильных электролитов (щелочей, солей, кислот - NaOH, K2S04, HN03, НС104).

Раньше существовали две точки зрения на природу растворения и растворов: физическая и химическая. Согласно первой растворы рассматривали как механические смеси, согласно второй - как нестойкие химические соединения частиц растворенного вещества с водой или другим растворителем. Последняя теория была высказана в 1887 г. Д. И. Менделеевым , который посвятил исследованию растворов более 40 лет. Современная химия рассматривает растворение как физико-химический процесс, а растворы как физико-химические системы.

Более точное определение раствора таково:

Раствор - гомогенная (однородная) система, состоящая из частиц растворенного вещества, растворителя и продуктов их взаимодействия.
Поведение и свойства растворов электролитов, как вы хорошо знаете, объясняет другая важнейшая теория химии - теория электролитической диссоциации, разработанная С. Аррениусом, развитая и дополненная учениками Д. И. Менделеева, и в первую очередь И. А. Каблуковым.

1. Что такое дисперсные системы?

2. При повреждении кожи (ранке) наблюдается свертывание крови - коагуляция золя. В чем сущность этого процесса? Почему это явление выполняет защитную функцию для организма? Как называют болезнь, при которой свертывание крови затруднено или не наблюдается?

3. Расскажите о значении различных дисперсных систем в быту.

4. Проследите эволюцию коллоидных систем в процессе развития жизни на Земле.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Дисперсные системы. Определение. Классификация.

Растворы

В предыдущем параграфе мы говорили о растворах . Здесь коротко напомним об этом понятии.


Растворами называют однородные (гомогенные) системы, состоящие из двух и более компонентов.


Гомогенная система – это однородная система, химический состав и физические свойства которой во всех частях одинаковы или меняются непрерывно, без скачков (между частями системы нет поверхностей раздела).


Такое определение раствора не вполне корректно. Оно скорее относится к истинным растворам .


В тоже время существуют ещё коллоидные растворы , которые являются не гомогенными, а гетерогенными , т.е. состоят из разных фаз, разделённых поверхностью раздела.


Для того чтобы достичь большей чёткости в определениях используют другой термин – дисперсные системы .


Перед рассмотрением дисперсных систем немного расскажем об истории их изучения и о появления такого термина как коллоидные растворы .

История вопроса

Ещё в 1845 г. химик Франческо Сельми, исследуя свойства различных растворов, заметил, что биологические жидкости – сыворотка и плазма крови, лимфа и другие – резко отличаются по своим свойствам от обычных истинных растворов, и поэтому такие жидкости были им названы псевдорастворами.

Коллоиды и кристаллоиды

Дальнейшие исследования в этом направлении, проводившиеся с 1861 г. английским учёным Томасом Грэмом, показали, что одни вещества, быстро диффундирующие и проходящие через растительные и животные мембраны, легко кристаллизуются, другие же обладают малой способностью к диффузии, не проходят через мембраны и не кристаллизуются, а образуют аморфные осадки.


Первые Грэм назвал кристаллоидами , а вторые – коллоидами (от греческого слова kolla – клей и eidos – вид) или клееподобными веществами.


В частности, было выявлено, что вещества, способные к образованию аморфных осадков, как, например, альбумин, желатин, гуммиарабик, гидроокиси железа и алюминия и некоторые другие вещества, диффундируют в воде медленно по сравнению со скоростью диффузии таких кристаллических веществ, как поваренная соль, сернокислый магний, тростниковый сахар и др.


В таблице ниже приведены коэффициенты диффузии D для некоторых кристаллоидов и коллоидов при 18С.



Из таблицы видно, что между молекулярным весом и коэффициентом диффузии существует обратная зависимость.


Кромме того у кристаллоидов была обнаружена способность не только быстро диффундировать, но и диализироваться , т.е. проходить через мембранны, в противоположность коллоидам, имеющим больший размер молекул и поэтому медленно диффундирующим и не проникающим через мембраны.


В качестве мембран используют стенки бычьего пузыря, целлофан, плёнки из железисто-синеродистой меди и т.д.


На основании сделанных наблюдений Грэм установил, что все вещества могут быть подразделены на кристаллоиды и коллоиды .

Русские не согласны

Против такого строго разделения химических веществ возражал профессор Киевского университета И.Г. Борщёв (1869). Мнение Борщёва позднее было подтвеждено исследованиями другого русского учёного Веймарна , который доказал, что одно и то же вещество в зависимости от условий может проявлять свойства коллоидов или кристаллоидов.


Так, например, раствор мыла в воде обладает свойствами коллоида , а мыло, растворённое в спирте, проявляет свойства истинных растворов .


Точно также кристаллические соли, например, поваренная соль, растворённая в воде, даёт истинный раствор , а в бензоле – коллоидный раствор и т.п.


Гемоглобин же или яичный альбумин, обладающие свойствами коллоидов, могут быть получены в кристаллическом состоянии.


Д.И. Менделеев полагал, что любое вещество, в зависимости от условий и природы среды, может проявлять свойства коллоида . В настоящее время любое вещество можно получить в коллоидном состоянии.


Таким образом, нет оснований подразделять вещества на два обособленных класса – на кристаллоиды и коллоиды, а можно говорить о коллоидном и кристаллоидном состоянии вещества.


Под коллоидным состоянием вещества подразумевается определённая степень его раздробленности или дисперсности и нахождении коллоидных частиц во взвешенном состоянии в растворителе.


Наука, изучающая физико-химические свойства гетерогенных высокодисперсных и высокомолекулярных систем называется коллоидной химией .

Дисперсные системы

Если одно вещество, находящееся в раздробленном (диспергированном) состоянии, равномерно распределено в массе другого вещества, то такую систему называют дисперсной.


В таких системах раздробленное вещество принято называть дисперсной фазой , а среду, в которой она распределена, - дисперсионной средой .


Так, например, система, представляющая собой взмученную глину в воде, состоит из взвешенных мелких частиц глины – дисперсной фазы и воды – дисперсионной среды.


Дисперсные (раздробленные) системы являются гетерогенными .


Дисперсные системы, в отличие от гетерогенных с относительно крупными, сплошными фазами, называют микрогетерогенными , а коллоиднодисперсные системы называют ультрамикрогетерогенными .

Классификация дисперсных систем

Классификацию дисперсных систем чаще всего производят исходя из степени дисперсности или агрегатного состояния дисперсной фазы и дисперсионной среды.

Классификация по степени дисперсности

Все дисперсные системы по величине частиц дисперсной фазы можно разделить на следующие группы:



Для справки прводим единицы размеров в системе СИ:
1 м (метр) = 102 см (сантиметра) = 103 мм (миллиметра) = 106 мкм (микрометра) = 109 нм (нанометра).

Иногда применяют другие единицы – мк (микрон) или ммк (миллимикрон), причём:
1 нм = 10 -9 м =10 -7 см = 1 ммк;
1 мкм = 10 -6 м = 10 -4 см = 1 мк.


Грубодисперсные системы.


Эти системы содержат в качестве дисперсной фазы наиболее крупные частицы диаметром от 0,1 мк и выше . К этим системам относятся суспензии и эмульсии .


Суспензиями называют системы, в которых твёрдое вещество находится в жидкой дисперсионной среде, например, взвесь крахмала, глины и др. в воде.


Эмульсиями называют дисперсионные системы двух несмешивающихся жидкостей, где капельки одной жидкости во взвешенном состоянии распределены в объёме другой жидкости. Например, масло, бензол, толуол в воде или капельки жира (диаметром от 0,1 до 22 мк) в молоке и др.


Коллоидные системы.


Они имеют размеры частиц дисперсной фазы от 0,1 мк до 1 ммк (или от 10 -5 до 10 -7 см). Такие частицы могут проходить через поры фильтровальной бумаги, но не проникают через поры животных и растительных мембран.


Коллоидные частицы при наличии у них электрического заряда и сольватно-ионных оболочек остаются во взвешенном состоянии и без изменения условий очень долго могут не выпадать в осадок.


Примерами коллоидных систем могут служить растворы альбумина, желатина, гуммиарабика, коллоидные растворы золота, серебра, сернистого мышьяка и др.


Молекулярно-дисперсные системы.


Такие системы имеют размеры частиц, не превышающие 1ммк. К молекулярно-дисперсным системам относятся истинные растворы неэлектролитов.


Ионно-дисперсные системы.


Это растворы различных электролитов, как, например, солей, оснований и т.д., распадающихся на соответствующие ионы, размеры которых весьма малы и выходят далеко за пределы
10 -8 см .


Уточнение по повду представления истинных растворов как дисперсных системах.

Из приведённой здесь классификации видно, что любой раствор (как истинный, так и коллоидный) можно представить как дисперсную среду. Истинные и коллоидные растворы будут различаться размерами частиц дисперсных фаз. Но выше мы писали о гомогенности истинных растворов, а дисперсионные системы гетерогенны. Как разрешить это противоречие?

Если говорить о структуре истинных растворов, то их гомогенность будет относительной. Структурные единицы истинных растворов (молекулы или ионы) значительно меньше частиц коллоидных растворов. Поэтому, можно сказать, что по сравнению с коллоидными растворами и взвесями, истинные растворы гомогенны.

Если же говорить о свойствах истинных растворов, то их нельзя в полной мере называть дисперсными системами, поскольку обязательным существованием дисперсных систем является взаимная нерастворимость диспергированного вещества и дисперсионной среды.

В коллоидных растворах и грубых взвесях дисперсная фаза и дисперсионная среда практически не смешиваются и не реагируют друг с другом химически. Этого совсем нельзя сказать об истинных растворах. В них при растворении вещества смешиваются и даже взаимодействуют друг с другом. По этой причине коллоидные растворы резко отличаются по свойствам от истинных растворов.


Размеры некоторых молекул, частиц, клеток.



По мере изменения размеров частиц от наиболее крупных к мелким и обратно будут соответственно меняться и свойства дисперсных систем. При этом коллоидные системы занимают как бы промежуточное положение между грубыми взвесями и молекулярно-дисперсными системами.

Классификация по агрегатному состоянию дисперсной фазы и дисперсионной среды.

Пены – это дисперсия газа в жидкости, причём в пенах жидкость вырождается до тонких плёнок, разделяющих отдельные пузырьки газа.


Эмульсиями называют дисперсные системы, в которых одна жидкость раздроблена другой, нерастворяющей её жидкостью (например вода в жире).


Суспензиями называют низкодисперсные системы твёрдых частиц в жидкостях.


Сочетания трех видов агрегатного состояния позволяют выделить девять видов дисперсных систем:


Дисперсная фаза
Дисперсионная среда
Название и пример

Газообразная

Газообразная

Дисперсная система не образуется

Газообразная

Газовые эмульсии и пены

Газообразная

Пористые тела: поролон пемза

Газообразная

Аэрозоли: туманы, облака

Эмульсии: нефть, крем, молоко, маргарин, масло

Капилярные системы: Жидкость в пористых телах, грунт, почва

Газообразная

Аэрозоли (пыли, дымы), поршки

Суспензии: пульпа, ил, взвесь, паста

Твёрдые системы: сплавы, бетон

Золи – другое название коллоидных растворов.


Коллоидные растворы иначе называют золями (от латинского solutus – растворённый).


Дисперсные системы с газообразной дисперсионной средой называют аэрозолями . Туманы представляют собой аэрозоли с жидкой дисперсной фазой, а пыль и дым – аэрозоли с твёрдой дисперсной фазой. Дым более высокодисперсная система, чем пыль.


Дисперсные системы с жидкой дисперсионной средой называют лизолями (от греческого «лиос» – жидкость).


В зависимости от растворителя (дисперсионной среды), т.е. воды, спирта бензола или эфира и т.д., различают гидрозоли, алкозоли, бензоли, этерозоли и т.д.


Связнодисперсные системы. Гели.


Дисперсные системы могут быть свободнодисперсными и связнодисперсными в зависимости от отсутствия или наличия взаимодействия между частицами дисперсной фазы.


К свободнодисперсным системам относятся аэрозоли, лизоли, разбавленные суспензии и эмульсии. Они текучи. В этих системах частицы дисперсной фазы не имеют контактов, участвуют в беспорядочном тепловом движении, свободно перемещаются под действием силы тяжести.



На рисунках выше изображены свободно-дисперсные системы :
На рисунках а, б, в изображены корпускулярно-дисперсные системы :
а,б - монодисперсные системы,
в - полидисперсная система,
На рисунке г изображена волокнисто-дисперсная система
На рисунке д изображена плёночно-дисперсная система


– твердообразны. Они возникают при контакте частиц дисперсной фазы, приводящем к образованию структуры в виде каркаса или сетки.


Такая структура ограничивает текучесть дисперсной системы и придаёт ей способность сохранять форму. Подобные структурированные коллоидные системы называются гелями .


Переход золя в гель, происходящий в результате понижения устойчивости золя, называют гелеобразованием (или желатинированием).



На рисунках а, б, в изображены связнодисперсные системы :
а - гель,
б - коагулят с плотной структурой,
в - коагулят с рыхлой - "арочной" структурой
На рисунках г, д изображены капилярнодисперсные системы


Порошки (пасты), пены – примеры связнодисперсных систем.


Почва , образовавшаяся в результате контакта и уплотнения дисперсных частиц почвенных минералов и гумусовых (органических) веществ, также представляет собой связнодисперсную систему.


Сплошную массу вещества могут пронизывать поры и капиляры, образующие капилярнодисперсные системы. К ним относятся, например, древесина, кожа, бумага, картон, ткани .

Лиофильность и лиофобность

Общей характеристикой коллоидных растворов является свойство их дисперсной фазы взаимодействовать с дисперсионной средой. В этом отношении различают два типа золей:


1. Лиофобные (от греческого phobia – ненависть ) и

2. Лиофильные (от греческого philia – любовь ).


У лиофобных золей частицы не имеют сродства к растворителю, слабо с ним взаимодействуют и образуют вокруг себя тонкую оболочку из молекул растворителя.


В частности, если дисперсионной средой является вода, то такие системы называются гидрофобными , например, золи металлов железа, золота, сернистого мышьяка, хлористого серебра и т.д.


В лиофильных системах между диспергированным веществом и растворителем имеется сродство. Частицы дисперсной фазы, в этом случае, приобретают более объёмную оболочку из молекул растворителя.


В случае водной дисперсионной среды такие системы называются гидрофильными , как, например, растворы белка, крахмала, агар-агара, гуммиарабика и др.

Коагуляция коллоидов. Стабилизаторы.
Вещество на границе раздела фаз.

Все жидкости и твёрдые тела ограничены внешней поверхностью, на которой они соприкасаются с фазами другого состава и структуры, например, с паром, другой жидкостью или твёрдым телом.


Свойства вещества в этой межфазовой поверхности , толщиной в несколько поперечников атомов или молекул, отличаются от свойств внутри объёма фазы.


Внутри объёма чистого вещества в твёрдом, жидком или газообразном состоянии любая молекула окружена себе подобными молекулами.


В пограничном слое молекулы находятся во взаимодействии или с другим числом молекул (другим в сравнении с взаимодействием внутри объёма вещества).


Это происходит, например, на границе жидкости или твёрдого тела с их паром. Либо в пограничном слое молекулы вещества взаимодействуют с молекулами другой химической природы, например, на границе двух взаимно малорастворимых жидкостей.


В результате различия в характере взаимодействия внутри объёма фаз и на границе фаз возникают силовые поля , связанные с этой неравномерностью. (Подробнее об этом в параграфе Поверхностное натяжение жидкости.)


Чем больше различие в напряжённости межмолекулярных сил, действующих в каждой из фаз, тем больше потенциальная энергия межфазовой поверхности, кратко называемой поверхностной энергией .


Поверхностное натяжение
Для оценки поверхностной энергии пользуются такой величиной, как удельная свободная поверхностная энергия. Она равна работе затрачиваемой на образование единицы площади новой поверхности раздела фаз (при условии постоянной температуры).
В случае границы двух конденсированных фаз эту величину называют пограничным натяжением .
Когда говорят о границе жидкости с её парами, то эту величину называют поверхностным натяжением .

Коагуляция коллоидов

Все самопроизвольные процессы происходят в направлении уменьшения энергии системы (изобарного потенциала).


Аналогично, на границе раздела фаз самопроизвольно происходят процессы в направлении уменьшения свободной поверхностной энергии.


Свободная энергия тем меньше, чем меньше поверхность раздела фаз.


А поверхность раздела фаз, в свою очередь, связана со степенью дисперсности растворённого вещества. Чем выше дисперсность (мельче частицы дисперсной фазы), тем больше поверхность раздела фаз.


Таким образом, в дисперсных системах всегда существуют силы, приводящие к уменьшению суммарной поверхности раздела фаз , т.е. к укрупнению частиц. Поэтому происходит слияние мелких капель в туманах, дождевых облаках и эмульсиях – агрегация высокодисперсных частиц в более крупные образования.


Всё это приводит к разрушению дисперсных систем: туманы и дождевые облака проливаются дождём, эмульсии расслаиваются, коллоидные растворы коагулируют, т.е. разделяются на осадок дисперсной фазы (коагулят) и дисперсионную среду или в случае вытянутых частиц дисперсной фазы, превращаются в гель.


Способность раздробленных систем сохранять присущую им степень дисперсности называется агрегативной устойчивостью .

Стабилизаторы дисперсных систем

Как было сказано ранее, дисперсные системы принципиально термодинамически неустойчивы . Чем выше дисперсность, тем больше свободная поверхностная энергия, тем больше склонность к самопроизвольному уменьшению дисперсности.


Поэтому для получения устойчивых, т.е. длительно сохраняющихся суспензий, эмульсий, коллоидных растворов, необходимо не только достигнуть заданной дисперсности, но и создать условия для её стабилизации.


Ввиду этого устойчивые дисперсные системы состоят не менее чем из трёх компонентов: дисперсной фазы, дисперсионной среды и третьего компонента – стабилизатора дисперсной системы .


Стабилизатор может иметь как ионную, так и молекулярную, часто высокомолекулярную, природу.


Ионная стабилизация золей лиофобных коллоидов связана с присутствием малых концентраций электролитов, создающих ионные пограничные слои между дисперсной фазой и дисперсионной средой.


Высокомолекулярные соединения (белки, полипептиды, поливиниловый спирт и другие), добавляемые для стабилизации дисперсных систем, называют защитными коллоидами.


Адсорбируясь на границе раздела фаз, они образуют в поверхностном слое сетчатые и гелеобразные структуры, создающие структурно-механический барьер, который препятствует объединению частиц дисперсной фазы.


Структурно-механическая стабилизация имеет решающее значение для стабилизации взвесей, паст, пен, концентрированных эмульсий.

Неоднородной, или гетерогенной , считается система, которая состоит из двух или нескольких фаз. Каждая фаза имеет свою поверхность раздела, которую можно механически разделить.

Неоднородная система состоит из дисперсной (внутренней) фазы и дисперсионной (внешней) среды, окружающей частицы дисперсной фазы.

Системы, в которых внешней фазой являются жидкости, называются неоднородными жидкими системами, а системы, в которых внешней фазой являются газы, – неоднородными газовыми системами. Гетерогенные системы часто называют дисперсными системами.

Различают следующие виды неоднородных систем : суспензии, эмульсии, пены, пыли, дымы, туманы.

Суспензия – это система, состоящая из жидкой дисперсионной фазы и твердой дисперсной фазы (например, соусы с мукой, крахмальное молоко, патока с кристаллами сахара). Суспензии в зависимости от размеров частиц делятся на грубые (размер частиц более 100 мкм), тонкие (0,1–100 мкм) и коллоидные (0,1 мкм и менее).

Эмульсия – это система, состоящая из жидкости и распределенных в ней капель другой жидкости, не смешивающейся с первой (например, молоко, смесь растительного масла и воды). Под действием силы тяжести эмульсии расслаиваются, но при незначительных размерах капель (менее 0,4–0,5 мкм) или при добавлении стабилизаторов эмульсии становятся устойчивыми, не способными к расслоению в течение продолжительного периода.

Увеличение концентрации дисперсной фазы может вызвать ее переход в дисперсионную фазу, и наоборот. Такой взаимный переход называется инверсией фаз.Имеются газовые эмульсии, в которых дисперсионная среда – жидкость, а дисперсная фаза – газ.

Пена – это система, состоящая из жидкой дисперсионной фазы и распределенных в ней пузырьков газа (газовая дисперсная фаза) (например, кремы и другие взбитые продукты). Пены по своим свойствам близки к эмульсиям. Для эмульсий и пен характерна инверсия фаз.

Пыли, дымы, туманы представляют собой аэрозоли.

Аэрозолями называют дисперсную систему с газообразной дисперсионной средой и твердой или жидкой дисперсной фазой, которая состоит из частиц от квазимолекулярного до микроскопического размера, обладающих свойством находиться во взвешенном состоянии более или менее продолжительное время (например, мучная пыль, образуемая при , просеивании, транспортировке муки; сахарная пыль, образуемая при , и др.). Дым образуется при сжигании твердого топлива, туман – при конденсации пара.

В аэрозолях дисперсионной средой является газ или воздух, а дисперсной фазой в пыли и дыме – твердые вещества, в туманах – жидкость. Размеры твердых частиц пыли составляют 3–70 мкм, дыма – 0,3–5 мкм.

Туман – это система, состоящая из газовой дисперсионной среды и распределенных в ней капель жидкости (жидкая дисперсная фаза). Размер жидких капель, образовавшихся в результате конденсации в тумане, составляет 0,3–3 мкм. Качественным показателем, характеризующим однородность частиц аэрозоля по размеру, является степень дисперсности.

Аэрозоль называют монодисперсным, когда составляющие его частицы имеют одинаковый размер, и полидисперсным при содержании в нем частиц разного размера. Монодисперсных аэрозолей в природе практически не существует. Лишь некоторые аэрозоли по размерам частиц приближаются к монодисперсным системам (гифы грибов, специально получаемые туманы и др.).

Дисперсные, или гетерогенные, системы в зависимости от количества дисперсных фаз могут быть одно– и многокомпонентными. Например, многокомпонентной системой являются молоко (имеет две дисперсные фазы: жир и белок); соусы (дисперсными фазами являются мука, жир и др.).