Кратные интегралы (задачи и упражнения). Кратные интегралы Площадь произвольной поверхности

Кратные интегралы (задачи и упражнения). Кратные интегралы Площадь произвольной поверхности

Министерство образования и науки Российской Федерации

Курсовая работа

По дисциплине: Высшая математика

(Основы линейного программирования)

На тему: КРАТНЫЕ ИНТЕГРАЛЫ

Выполнил: ______________

Преподаватель:___________

Дата ___________________

Оценка _________________

Подпись ________________

ВОРОНЕЖ 2008


1 Кратные интегралы

1.1 Двойной интеграл

1.2 Тройной интеграл

1.3 Кратные интегралы в криволинейных координатах

1.4 Геометрические и физические приложения кратных интегралов

2 Криволинейные и поверхностные интегралы

2.1 Криволинейные интегралы

2.2 Поверхностные интегралы

2.3 Геометрические и физические приложения

Список используемой литературы


1 Кратные интегралы

1.1 Двойной интеграл

Рассмотрим в плоскости Оху замкнутую область D, ограниченную линией L. Разобьем эту область какими-нибудь линиями на п частей

, а соответствующие наибольшие расстояния между точками в каждой из этих частей обозначим d 1 , d 2 , ..., d n . Выберем в каждой части точку Р i .

Пусть в области D задана функция z = f(x, y). Обозначим через f(P 1), f(P 2),…, f(P n) значения этой функции в выбранных точках и составим сумму произведений вида f(P i)ΔS i:

, (1)

называемую интегральной суммой для функции f(x, y) в области D.

Если существует один и тот же предел интегральных сумм (1) при

и , не зависящий ни от способа разбиения области D на части, ни от выбора точек P i в них, то он называется двойным интегралом от функции f(x, y) по области D и обозначается . (2)

Вычисление двойного интеграла по области D, ограниченной линиями

x = a, x = b(a < b), где φ 1 (х) и φ 2 (х) непрерывны на (рис. 1) сводится к последовательному вычислению двух определенных интегралов, или так называемого двукратного интеграла: = (3)

1.2 Тройной интеграл

Понятие тройного интеграла вводится по аналогии с двойным интегралом.

Пусть в пространстве задана некоторая область V, ограниченная замкнутой поверхностью S. Зададим в этой замкнутой области непрерывную функцию f(x, y, z). Затем разобьем область V на произвольные части Δv i , считая объем каждой части равным Δv i , и составим интегральную сумму вида

, (4)

Предел при

интегральных сумм (11), не зависящий от способа разбиения области V и выбора точек P i в каждой подобласти этой области, называется тройным интегралом от функции f(x, y, z) по области V: . (5)

Тройной интеграл от функции f(x,y,z) по области V равен трехкратному интегралу по той же области:

. (6)

1.3 Кратные интегралы в криволинейных координатах

Введем на плоскости криволинейные координаты, называемые полярными. Выберем точку О (полюс) и выходящий из нее луч (полярную ось).

Рис. 2 Рис. 3

Координатами точки М (рис. 2) будут длина отрезка МО – полярный радиус ρ и угол φ между МО и полярной осью: М(ρ,φ). Отметим, что для всех точек плоскости, кроме полюса, ρ > 0, а полярный угол φ будем считать положительным при измерении его в направлении против часовой стрелки и отрицательным – при измерении в противоположном направлении.

Связь между полярными и декартовыми координатами точки М можно задать, если совместить начало декартовой системы координат с полюсом, а положительную полуось Ох – с полярной осью (рис. 3). Тогда x=ρcosφ, у=ρsinφ . Отсюда

, tg.

Зададим в области D, ограниченной кривыми ρ=Φ 1 (φ) и ρ=Φ 2 (φ), где φ 1 < φ < φ 2 , непрерывную функцию z = f(φ, ρ) (рис. 4).

(7)

В трехмерном пространстве вводятся цилиндрические и сферические координаты.

Цилиндрические координаты точки Р(ρ,φ,z) – это полярные координаты ρ, φ проекции этой точки на плоскость Оху и аппликата данной точки z (рис.5).

Рис.5 Рис.6

Формулы перехода от цилиндрических координат к декартовым можно задать следующим образом:

x = ρcosφ, y = ρsinφ, z = z. (8)

В сферических координатах положение точки в пространстве определяется линейной координатой r – расстоянием от точки до начала декартовой системы координат (или полюса сферической системы), φ – полярным углом между положительной полуосью Ох и проекцией точки на плоскость Оху, и θ – углом между положительной полуосью оси Оz и отрезком OP (рис.6). При этом

Зададим формулы перехода от сферических координат к декартовым:

x = rsinθcosφ, y = rsinθsinφ, z = rcosθ. (9)

Тогда формулы перехода к цилиндрическим или сферическим координатам в тройном интеграле будут выглядеть так:


, (10)

где F 1 и F 2 – функции, полученные при подстановке в функцию fвместо x, y, z их выражений через цилиндрические (8) или сферические (9) координаты.

1.4 Геометрические и физические приложения кратных интегралов

1) Площадь плоской области S:

(11)

Пример 1.

Найти площадь фигуры D, ограниченной линиями

Эту площадь удобно вычислять, считая у внешней переменной. Тогда границы области задаются уравнениями

и
вычисляется с помощью интегрирования по частям:

Предостережение.При вычислении несобственных интегралов с особыми точками внутрипромежутка интегрирования нельзямеханически применять формулу Ньютона – Лейбница, поскольку это может привести к ошибкам.

Общее правило: формула Ньютона – Лейбница верна, если первообразная от f(x) в особой точке последней непрерывна.

Пример 2.11.

Рассмотрим несобственный интеграл с особой точкой х = 0. Формула Ньютона–Лейбница, применяемая формально, дает

Однако общее правило здесь не выполняется; для f(x) = 1/x первообразная ln |x| не определена в х = 0 и является бесконечно большой в этой точке, т.е. не является непрерывной в этой точке. Непосредственной проверкой легко убедиться, что интеграл расходится. Действительно,

Полученная неопределенность может быть раскрыта по-разному, поскольку e и d стремятся к нулю независимым образом. В частности, полагая e = d, получаем главное значение несобственного интеграла, равное 0. Если e = 1/n, а d =1/n 2 , т.е. d стремится к 0 быстрее, чем e, то получаем

при и , наоборот,

т.е. интеграл расходится.n

Пример 2.12.

Рассмотрим несобственный интеграл с особой точкой х = 0. Первообразная от функции имеет вид и непрерывна в точке х = 0. Поэтому можно применить формулу Ньютона – Лейбница:

Естественным обобщением понятия определенного интеграла Римана на случай функции нескольких переменных является понятие кратного интеграла. Для случая двух переменных такие интегралы называют двойными.

Рассмотрим в двумерном евклидовом пространстве R ´ R , т.е. на плоскости с декартовой системой координат, множество Е конечной площади S .

Обозначим через (i = 1, …, k ) разбиение множества Е , т.е. такую систему его подмножеств E i , i = 1,. . ., k , что Ø при i ¹ j и (рис. 2.5). Здесь через обозначено подмножество E i без его границы, т.е. внутренние точки подмножества E i , которые вместе с его границей Гр E i образуют замкнутое подмножество E i, . Ясно, что площадь S (E i) подмножества E i совпадает с площадью его внутренней части , поскольку площадь границы ГрE i равна нулю.

Через d(E i) обозначим диаметр множества E i , т.е. максимальное расстояние между двумя его точками. Величину l(t) = d(E i) назовем мелкостью разбиения t. Если функция f(x),x = (x, y), определена на E как функция двух аргументов, то всякую сумму вида

X i Î E i , i = 1, . . . , k, x i = (x i , y i),

зависящую как от функции f и разбиения t , так и от выбора точек x i Î E i Ì t, называют интегральной суммой функции f .

Если для функции f существует ,не зависящий ни от разбиений t , ни от выбора точек (i = 1, …, k), то этот предел называется двойным интегралом Римана от f(x,y) и обозначается



Саму функцию f называют в этом случае интегрируемой по Риману .

Напомним, что в случае функции одного аргумента в качестве множества Е , по которому производится интегрирование, обычно берется отрезок , а в качестве его разбиения t рассматривается разбиение, состоящее из отрезков. В остальном, как нетрудно убедиться, определение двойного интеграла Римана повторяет определение определенного интеграла Римана для функции одного аргумента.

Двойной интеграл Римана от ограниченных функций двух переменных обладает обычными свойствами определенного интеграла для функций одного аргумента – линейностью, аддитивностью относительно множеств, по которым производится интегрирование, сохранение при интегрировании нестрогих неравенств , интегрируемость произведения интегрируемых функций и т.п.

Вычисление кратных интегралов Римана сводится к вычислению повторных интегралов . Рассмотрим случай двойного интеграла Римана. Пусть функция f(x,y) определена на множестве Е, лежащем в декартовом произведении множеств X ´ Y, E Ì X ´ Y.

Повторным интегралом от функции f(x, y) называется интеграл, в котором последовательно выполняется интегрирование по разным переменным, т.е. интеграл вида

Множество E(y) = {x: Î E} Ì X называется сечением множества E, соответствующим заданному y, y Î E y ; множество E y называется – проекцией множества E на ось Y.

Для повторного интеграла используют также такое обозначение:

которое, как и прежнее, означает, что сначала при фиксированном y, y Î E y , проводится интегрирование функции f(x, y) по x по отрезку E (y ), являющемуся сечением множества Е , соответствующим этому y. В результате внутренний интеграл определяет некоторую функцию одной переменной – y. Эта функция интегрируется затем как функция одной переменной, на что указывает символ внешнего интеграла.

При изменении порядка интегрирования получается повторный интеграл вида

где внутреннее интегрирование проводится по y, а внешнее – по x. Как соотносится этот повторный интеграл с повторным интегралом, определенным выше?

Если существует двойной интеграл от функции f , т.е.

то существуют и оба повторных интеграла, причем они одинаковы по величине и равны двойному, т.е.

Подчеркнем, что сформулированное в этом утверждении условие возможности перемены порядка интегрирования в повторных интегралах является лишь достаточным , но не необходимым.

Другие достаточные условия возможности перемены порядка интегрирования в повторных интегралах формулируются следующим образом:

если существует хотя бы один из интегралов

то функция f(x, y) интегрируема по Риману на множестве Е , оба повторных интеграла от нее существуют и равны двойному интегралу. n

Конкретизируем записи проекций и сечений в обозначениях повторных интегралов.


Если множество Е является прямоугольником

то E x = {x: a £ x £ b}, E y = {y: c £ y £ d}; при этом E(y) = E x для любого y, y Î E y . , а E(x) = E y для любого x, x Î E x ..

Формальная запись: "y y Î E y Þ E(y) = E x Ù"x x Î E x Þ E(x) = E y

Если множество Е имеет криволинейную границу и допускает представления

В этом случае повторные интегралы записываются так:

Пример 2.13.

Вычислить двойной интеграл по прямоугольной области, сведя его к повторному .

Поскольку выполняется условие sin 2 (x+ y) =| sin 2 (x + y)|, то проверку выполнимости достаточных условий существования двойного интеграла I в форме существования любого из повторных интегралов

здесь проводить специально не следует и можно сразу переходить к вычислению повторного интеграла

Если он существует, то существует и двойной интеграл, причем I = I 1 . Поскольку

Итак, I = .n

Пример 2.14.

Вычислить двойной интеграл по треугольной области (см. рис. 2.6), сведя его к повторному

Гр(E) = {: x = 0, y = 0, x + y = 2}.

Сначала убедимся в существовании двойного интеграла I. Для этого достаточно убедиться в существовании повторного интеграла

т.е. подынтегральные функции непрерывны на отрезках интегрирования, поскольку все они степенные. Следовательно, интеграл I 1 существует. В этом случае двойной интеграл тоже существует и равен любому повторному, т.е.


Пример 2.15.

Для лучшего понимания связи между понятиями двойного и повторных интегралов рассмотрим следующий пример, который при первом чтении может быть опущен. Задана функция двух переменных f(x, y)

Отметим, что эта функция при фиксированном х нечетна по y , а при фиксированном y – нечетна по x. В качестве множества Е, по которому интегрируется эта функция, возьмем квадрат E = {: -1 £ x £ 1, -1 £ y £ 1 }.

Вначале рассмотрим повторный интеграл

Внутренний интеграл

берется при фиксированном y, -1 £ y £ 1. Поскольку подынтегральная функция при фиксированном y нечетная по x, а интегрирование по этой переменной осуществляется по отрезку [-1, 1], симметричному относительно точки 0, то внутренний интеграл равен 0. Очевидно, что внешний интеграл по переменной y от нулевой функции также равен 0, т.е.

Аналогичные рассуждения для второго повторного интеграла приводят к тому же результату:

Итак, для рассматриваемой функции f(x, y) повторные интегралы существуют и равны друг другу. Однако двойной интеграл от функции f(x, y) не существует. Чтобы убедиться в этом, обратимся к геометрическому смыслу вычисления повторных интегралов.

Для вычисления повторного интеграла

используется разбиение квадрата Е специального вида, равно как и специальным образом проводимый подсчет интегральных сумм. Именно, квадрат Е разбивается на горизонтальные полосы, (см. рис.2.7), а каждая полоса – на маленькие прямоугольники. Каждая полоска соответствует некоторому значению переменной y; например, это может быть ордината горизонтальной оси полосы.


Подсчет интегральных сумм производится так: сначала подсчитывается суммы для каждой полосы в отдельности, т.е. при фиксированном y для разных x, а затем эти промежуточные суммы суммируются для разных полос, т.е. для разных y. Если мелкость разбиения устремить к нулю, то в пределе мы получим указанный выше повторный интеграл.

Ясно, что для второго повторного интеграла

множество Е разбивается вертикальными полосами, соответствующими разным x. Промежуточные суммы подсчитываются внутри каждой полосы по маленьким прямоугольникам, т.е. по y, а затем они суммируются для разных полос, т.е. по х. В пределе, при мелкости разбиения, стремящейся к нулю, получаем соответствующий повторный интеграл.

Чтобы доказать, что двойной интеграл не существует, достаточно привести один пример разбиения, расчет интегральных сумм по которому в пределе при мелкости разбиения, стремящейся к нулю, дает результат, отличный от значения повторных интегралов. Приведем пример такого разбиения, соответствующего полярной системе координат (r, j) (см. рис. 2.8).

В полярной системе координат положение любой точки на плоскости М 0 (x 0 , y 0), где x 0 ,y 0 – декартовы координаты точки М 0 – определяется длиной r 0 радиуса, соединяющего ее с началом координат и углом j 0 , образуемым этим радиусом с положительным направлением оси x (угол отсчитывается против часовой стрелки). Связь между декартовыми и полярными координатами очевидна:

y 0 = r 0 × sinj 0 .


Разбиение строится следующим образом. Сначала квадрат Е разбивается на сектора радиусами, исходящими из центра координат, а затем каждый сектор – на маленькие трапеции линиями, перпендикулярными оси сектора. Подсчет интегральных сумм проводится так: сначала по маленьким трапециям внутри каждого сектора вдоль его оси (по r), а затем – по всем секторам (по j) . Положение каждого сектора характеризуется углом его оси j, а длина его оси r(j) зависит от этого угла:

если или , то ;

если , то ;

если , то

если , то .

Переходя к пределу интегральных сумм полярного разбиения при мелкости разбиения, стремящейся к нулю, получим запись двойного интеграла в полярных координатах. Такую запись можно получить и чисто формальным образом, заменяя декартовы координаты (x, y) на полярные (r, j).

По правилам перехода в интегралах от декартовых координат к полярным следует писать, по определению:

В полярных координатах функция f(x, y) запишется так:

Окончательно имеем

Внутренний интеграл (несобственный) в последней формуле

где функция r(j) указана выше, 0 £ j £ 2p , равен +¥ для любого j, ибо

Следовательно, подынтегральная функция во внешнем интеграле, вычисляемом по j, не определена ни для какого j . Но тогда не определен и сам внешний интеграл, т.е. не определен исходный двойной интеграл.

Отметим, что для функции f(x, y) не выполнено достаточное условие существования двойного интеграла по множеству Е. Покажем, что интеграл

не существует. Действительно,

Аналогично устанавливается такой же результат для интеграла

Кратный интеграл

интеграл от функции, заданной в какой-либо области на плоскости, в трёхмерном или n -мерном пространстве. Среди К. и. различают двойные интегралы, тройные интегралы и т. д. n -кратные интегралы.

Пусть функция f (x, y ) задана в некоторой области D плоскости хОу. Разобьем область D на n частичных областей d i , площади которых равны s i , выберем в каждой области d i точку (ξ i , η i ) (см. рис. ) и составим интегральную сумму

Если при неограниченном уменьшении максимального диаметра частичных областей d i суммы S имеют предел независимо от выбора точек (ξ i , η i ), то этот предел называют двойным интегралом от функции f (x, у ) по области D и обозначают

Аналогично определяется тройной интеграл и вообще n -кратный интеграл.

Для существования двойного интеграла достаточно, например, чтобы область D была замкнутой квадрируемой областью (См. Квадрируемая область), а функция f (x, y ) была непрерывна в D. К. и. обладают рядом свойств, аналогичных свойствам простых Интеграл ов. Для вычисления К. и. обычно приводят его к повторному интегралу (См. Повторный интеграл). В специальных случаях для сведения К. и. к интегралам меньшей размерности могут служить Грина формулы и Остроградского формула . К. и. имеют обширные применения: с их помощью выражаются объёмы тел, их массы, статические моменты, моменты инерции и т. п.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Кратный интеграл" в других словарях:

    Интеграл от функции нескольких переменных. Определяется при помощи интегральных сумм, аналогично определенному интегралу от функции одного переменного (см. Интегральное исчисление). В зависимости от числа переменных различают двойные, тройные, n… … Большой Энциклопедический словарь

    Определенный интеграл от функции нескольких переменных. Имеются различные понятия К. и. (интеграл Римана, интеграл Лебега, интеграл Лебега Стилтьеса и др.). Кратный интеграл Римана вводится на основе Жордана меры Пусть Е измеримое по Жордану… … Математическая энциклопедия

    В математическом анализе кратным или многократным интегралом называют множество интегралов, взятых от переменных. Например: Замечание: кратный интеграл − это определенный интеграл, при его вычислении всегда получается число. Содержание 1… … Википедия

    Интеграл от функции нескольких переменных. Определяется при помощи интегральных сумм, аналогично определённому интегралу от функции одного переменного (см. Интегральное исчисление). В зависимости от числа переменных различают двойные, тройные, n… … Энциклопедический словарь

    Интеграл от функции нескольких переменных. Определяется при помощи интегральных сумм, аналогично определ. интегралу от функции одного переменного (см. Интегральное исчисление). В зависимости от числа переменных различают двойные, тройные, я… … Естествознание. Энциклопедический словарь

    Примечание: всюду в данной статье, где используется знак имеется в виду (кратный) интеграл Римана, если не оговорено обратное; всюду в данной статье, где говорится об измеримости множества, имеется в виду измеримость по Жордану, если не… … Википедия

    Кратный интеграл вида где являющийся средним значением степени 2k модуля тригонометрической суммы. Теорема Виноградова о величине этого интеграла теорема о среднем лежит в основе оценок сумм Вейля. Литература Виноградова инте … Википедия

    Определённый интеграл как площадь фигуры У этого термина существуют и другие значения, см. Интеграл (значения). Интеграл функции … Википедия

    Интеграл, в к ром последовательно выполняется интегрирование по разным переменным, т. е. интеграл вида (1) Функция f(x, y).определена на множестве А, лежащем в прямом произведении XX Y пространств Xи У, в к рых заданы s конечные меры mx и my,… … Математическая энциклопедия

    Интеграл, взятый вдоль какой либо кривой на плоскости или в пространстве. Различают К. и. 1 го и 2 го типов. К. и. 1 го типа возникает, например, при рассмотрении задачи о вычислении массы кривой переменной плотности; он обозначается… … Большая советская энциклопедия

Скачать с Depositfiles

Лекции 5-6

Тема2. Кратные интегралы.

Двойной интеграл.

Контрольные вопросы.

1. Двойной интеграл, его геометрический и физический смысл

2. Свойства двойного интеграла.

3. Вычисление двойного интеграла в декартовых координатах.

4. Замена переменных в двойном интеграле. Вычисление двойного интеграла в полярных координатах.

Пусть функция z = f (x , y ) определена в ограниченной замкнутой области D плоскости. Разобьём область D произвольным образом на n элементарных замкнутых областей 1 , … , n , имеющих площади  1 , …, n и диаметры d 1 , …, d n соответственно. Обозначим d наибольший из диаметров областей 1 , … , n . В каждой области k выберем произвольную точку P k (x k ,y k ) и составим интегральную сумму функции f (x,y )

S =
(1)

Определение. Двойным интегралом функции f (x,y ) по области D называется предел интегральной суммы


, (2)

если он существует.

Замечание. Интегральная сумма S зависит от способа разбиения области D и выбора точек P k (k =1, …, n ). Однако, предел
, если он существует, не зависит от способа разбиения области D и выбора точек P k .

Достаточное условие существования двойного интеграла. Двойной интеграл (1) существует, если функция f (x,y ) непрерывна в D за исключением конечного числа кусочно-гладких кривых и ограничена в D . В дальнейшем будем считать, что все рассматриваемые двойные интегралы существуют.

Геометрический смысл двойного интеграла.

Если f (x,y ) ≥0 в области D , то двойной интеграл (1) равен объему «цилиндрического” тела, изображенного на рисунке:

V =
(3)

Цилиндрическое тело ограничено снизу областью D , сверху  частью поверхности z = f (x , y ), с боков  вертикальными отрезками прямых, соединяющих границы этой поверхности и области D.

Физический смысл двойного интеграла. Масса плоской пластины.

Пусть задана плоская пластина D с известной функцией плотности γ(х, у ), тогда разбивая пластину D на части D i и выбирая произвольные точки
, получим для массы пластины
, или, сравнивая с формулой (2):




(4)

4. Некоторые свойства двойного интеграла.

    Линейность. Если С – числовая константа, то

    Аддитивность. Если область D « разбита” на области D 1 и D 2 , то

3) Площадь ограниченной области D равна


(5)

Вычисление двойного интеграла в декартовых координатах.

Пусть задана область


Рисунок 1

D = { (x , y ): a ≤ x ≤ b , φ 1 (x ) ≤ y≤ φ 2 (x ) } (6)

Область D заключена в полосе между прямыми x = a , y = b , снизу и сверху ограничена соответственно кривыми y = φ 1 (x ) и y = φ 2 (x ) .

Двойной интеграл (1) по области D (4) вычисляется переходом к повторному интегралу:


(7)

Этот повторный интеграл вычисляется следующим образом. Сначала вычисляется внутреннийинтеграл


по переменной y , п ри этомx считаетсяпостоянной. В результате получится функция от переменной x , а затем вычисляется « внешний” интеграл от этой функции по переменной x .

Замечание. Процесс перехода к повторному интегралу по формуле (7) часто называют расстановкой пределов интегрирования в двойном интеграле. При расстановке пределов интегрирования нужно помнить два момента. Во-первых, нижний предел интегрирования не должен превышать верхнего, во-вторых, пределы внешнего интеграла должны быть константами, а внутреннего должны в общем случае зависеть от переменной интегрирования внешнего интеграла.

Пусть теперь область D имеет вид

D = { (x , y ) : c ≤ y ≤ d , ψ 1 (y ) ≤ x ≤ ψ 2 (y ) } . (8)

Тогда


. (9)

Предположим, что область D можно представить в виде (6) и (8) одновременно. Тогда имеет место равенство


(10)

Переход од одного повторного интеграла к другому в равенстве (10) называется изменением порядка интегрирования в двойном интеграле.


Примеры.

1) Изменить порядок интегрирования в интеграле


Решение. По виду повторного интеграла находим область

D = { (x , y ): 0 ≤ x ≤ 1, 2 x ≤ y≤ 2 } .

Изобразим область D . По рисунку видим, что эта область расположена в горизонтальной полосе между прямыми y =0, y =2 и между линиями x =0 и x = D

Иногда для упрощения вычислений делают замену переменных:


,
(11)

Если функции (11) непрерывно дифференцируемы и определитель (Якобиан) отличен от нуля в рассматриваемой области:


(12)