Решение уравнений в целых числах. Уравнения в целых числах. Линейные уравнения в целых числах

Решение уравнений в целых числах. Уравнения в целых числах. Линейные уравнения в целых числах

Введение

Существует множество математических задач, ответами к которым служат одно или несколько целых чисел. В качестве примера можно привести четыре классические задачи, решаемые в целых числах – задача о взвешивании, задача о разбиении числа, задача о размене и задача о четырёх квадратах. Стоит отметить, что, несмотря на достаточно простую формулировку этих задач, решаются они весьма сложно, с применением аппарата математического анализа и комбинаторики. Идеи решения первых двух задач принадлежат швейцарскому математику Леонарду Эйлеру (1707–1783). Однако наиболее часто можно встретить задачи, в которых предлагается решить уравнение в целых (или в натуральных) числах. Некоторые из таких уравнений довольно легко решаются методом подбора, но при этом возникает серьёзная проблема – необходимо доказать, что все решения данного уравнения исчерпываются подобранными (то есть решений, отличных от подобранных, не существует). Для этого могут потребоваться самые разнообразные приёмы, как стандартные, так и искусственные. Анализ дополнительной математической литературы показывает, что подобные задания достаточно часто встречаются в олимпиадах по математике разных лет и различных уровней, а также в задании 19 ЕГЭ по математике (профильный уровень). В то же время в школьном курсе математики данная тема практически не рассматривается, поэтому школьники, участвуя в математических олимпиадах или сдавая профильный ЕГЭ по математике, обычно сталкиваются со значительными трудностями при выполнении подобного рода заданий. В связи с этим целесообразно выделить систему основных методов решения уравнений в целых числах, тем более что в изученной математической литературе этот вопрос явно не оговаривается. Описанная проблема определила цель данной работы: выделить основные методы решения уравнений в целых числах. Для достижения поставленной цели необходимо было решить следующие задачи:

1) Проанализировать олимпиадные материалы, а также материалы профильного ЕГЭ по математике;

2) Обозначить методы решения уравнений в целых числах и выделить преобладающие;

3) Полученные результаты проиллюстрировать примерами;

4) Составить несколько тренировочных заданий по данной теме;

5) Применяя разработанные задания, определить степень готовности учащихся девятых классов МБОУ СОШ №59 к решению подобного рода задач и сделать практические выводы.

Основная часть

Анализ разнообразной математической литературы показывает, что среди методов решения уравнений в целых числах в качестве основных можно выделить следующие:

  1. Представление уравнения в виде произведения нескольких множителей, равного некоторому целому числу;
  2. Представление уравнения в виде суммы квадратов нескольких слагаемых, равной некоторому целому числу;
  3. Использование свойств делимости, факториалов и точных квадратов;
  4. Использование Малой и Великой теорем Ферма;
  5. Метод бесконечного спуска;
  6. Выражение одной неизвестной через другую;
  7. Решение уравнения как квадратного относительно одной из неизвестных;
  8. Рассмотрение остатков от деления обеих частей уравнения на некоторое число.

Сразу же нужно оговорить, что мы понимаем под основными методами решения уравнений. Основными будем называть наиболее часто применяющиеся методы, что, конечно, не исключает возможности периодического применения новых «неожиданных» приёмов. Кроме того, причём в подавляющем большинстве случаев, применяют их различные сочетания, то есть проводят комбинирование нескольких методов.
В качестве примера сочетания методов рассмотрим уравнение, предлагавшееся на ЕГЭ по математике в 2013 году (задание С6).

Задача. Решить в натуральных числах уравнение n ! + 5n + 13 = k 2 .

Решение. Заметим, что оканчивается нулём при n > 4. Далее, при любых n ∈ N оканчивается либо цифрой 0, либо цифрой 5. Следовательно, при n > 4 левая часть уравнения оканчивается либо цифрой 3, либо цифрой 8. Но она же равна точному квадрату, который не может оканчиваться этими цифрами. Поэтому нужно перебрать только четыре варианта: n = 1, n = 2, n = 3, n = 4.

Значит, уравнение имеет единственное натуральное решение n = 2, k = 5.

В этой задаче использовались свойства точных квадратов, свойства факториалов, и остатки от деления обеих частей уравнения на 10.

Задача 1. n 2 - 4y ! = 3.

Решение. Сначала перепишем исходное уравнение в виде n 2 = 4y ! + 3. Если посмотреть на это соотношение с точки зрения теоремы о делении с остатком, то можно заметить, что точный квадрат, стоящий в левой части уравнения, даёт при делении на 4 остаток 3, что невозможно. Действительно, любое целое число представимо в одном из следующих четырёх видов:

Таким образом, точный квадрат при делении на 4 даёт в остатке либо 0, либо 1. Следовательно, исходное уравнение не имеет решений.

Ключевая идея – применение свойств точных квадратов.

Задача 2. 8z 2 = (t !) 2 + 2.

Решение. Непосредственная проверка показывает, что t = 0 и t = 1 не являются решениями уравнения. Если t > 1, то t ! является чётным числом, то есть, оно представимо в виде t ! = 2s . В таком случае уравнение можно преобразовать к виду 4z 2 = 2s 2 + 1. Однако, полученное уравнение заведомо не имеет решений, ибо в левой части стоит чётное число, а в правой – нечётное.

Ключевая идея – применение свойств факториалов.

Задача 3. Решить в целых числах уравнение x 2 + y 2 – 2x + 6y + 5 = 0.

Решение. Исходное уравнение можно переписать следующим образом: (x – 1) 2 + (y + 3) 2 = 5.

Из условия следует, что (x – 1), (y + 3) – целые числа. Следовательно, данное уравнение эквивалентно следующей совокупности:

Теперь можно выписать всевозможные целые решения уравнения.

Задача 4. Решить в целых числах уравнение zt + t – 2z = 7.

Решение. Исходное уравнение можно преобразовать к виду (z + 1) (t – 2) = 5. Числа (z + 1), (t – 2) являются целыми, поэтому имеют место следующие варианты:

Итак, уравнение имеет ровно четыре целых решения.

Ключевая идея – представление уравнения в виде произведения, равного целому числу.

Задача 5. Решить в целых числах уравнение n (n + 1) = (2k + 1)‼

Решение. Число (2k + 1)‼ нечётно при всех неотрицательных значениях k согласно определению (при отрицательных k оно вообще не определено). С другой стороны, оно равно числу n (n + 1), которое чётно при всех целых значениях k . Противоречие.

Ключевая идея – использование чётности/нечётности частей уравнения.

Задача 6. Решить в целых числах уравнение xy + x + 2y = 1.

Решение. Путём преобразований уравнение можно свести к следующему:

Данное преобразование не изменило ОДЗ неизвестных, входящих в уравнение, так как подстановка y = –1 в первоначальное уравнение приводит к абсурдному равенству –2 = 1. Согласно условию, x – целое число. Иначе говоря, тоже целое число. Но тогда число обязано быть целым. Дробь является целым числом тогда и только тогда, когда числитель делится на знаменатель. Делители числа 3: 1,3 –1, –3. Следовательно, для неизвестной возможны четыре случая: y = 0, y = 2, y = –2, y = –4. Теперь можно вычислить соответствующие значения неизвестной x . Итак, уравнение имеет ровно четыре целых решения: (–5;0), (–5;2), (1;–2), (1;–4).

Ключевая идея – выражение одной неизвестной через другую.

Задача 7. m = n 2 + 2.

Решение. Если m = 0, то уравнение примет вид n 2 = –1. Оно не имеет целых решений. Если m < 0, то левая часть уравнения, а значит, и n , не будет являться целым числом. Значит, m > 0. Тогда правая часть уравнения (как и левая) будет кратна 5. Но в таком случае n 2 при делении на 5 должно давать остаток 3, что невозможно (это доказывается методом перебора остатков, который был изложен при решении задачи 1). Следовательно, данное уравнение не имеет решений в целых числах.

Ключевая идея – нахождение остатков от деления обеих частей уравнения на некоторое натуральное число.

Задача 8. Решить в целых числах уравнение (x !) 4 + (y – 1) 4 = (z + 1) 4 .

Решение. Заметим, что в силу чётности показателей степеней уравнение эквивалентно следующему: (x !) 4 + |y – 1| 4 = |z + 1| 4 . Тогда x !, |y – 1|, |z + 1| – натуральные числа. Однако, согласно Великой теореме Ферма, эти натуральные числа не могут удовлетворять исходному уравнению. Таким образом, уравнение неразрешимо в целых числах.

Ключевая идея – использование Великой теоремы Ферма.

Задача 9. Решить в целых числах уравнение x 2 + 4y 2 = 16xy .

Решение. Из условия задачи следует, что x – чётное число. Тогда x 2 = 4x 1 2 . Уравнение преобразуется к виду x 1 2 + y 2 = 8x 1 y . Отсюда вытекает, что числа x 1 , y имеют одинаковую чётность. Рассмотрим два случая.

1 случай . Пусть x 1 , y – нечётные числа. Тогда x 1 = 2t + 1, y = 2s + 1. Подставляя эти выражения в уравнение, получим:

Выполним соответствующие преобразования:

Сокращая обе части полученного уравнения на 2, получим?

В левой части стоит нечётное число, а в правой – чётное. Противоречие. Значит, 1 случай невозможен.

2 случай . Пусть x 1 , y – чётные числа. Тогда x 1 = 2x 2 + 1, y = 2y 1 . Подставляя эти значения в уравнение, получим:

Таким образом, получилось уравнение, точно такое же, как на предыдущем шаге. Исследуется оно аналогично, поэтому на следующем шаге получим уравнение и т.д. Фактически, проводя эти преобразования, опирающиеся на чётность неизвестных, мы получаем следующие разложения: . Но величины n и k не ограничены, так как на любом шаге (со сколь угодно большим номером) будем получать уравнение, эквивалентное предыдущему. То есть, данный процесс не может прекратиться. Другими словами, числа x , y бесконечно много раз делятся на 2. Но это имеет место, только при условии, что x = y = 0. Итак, уравнение имеет ровно одно целое решение (0; 0).

Ключевая идея – использование метода бесконечного спуска.

Задача 10. Решить в целых числах уравнение 5x 2 – 3xy + y 2 = 4.

Решение. Перепишем данное уравнение в виде 5x 2 – (3x )y + (y 2 – 4) = 0. Его можно рассмотреть как квадратное относительно неизвестной x . Вычислим дискриминант этого уравнения:

Для того чтобы уравнение имело решения, необходимо и достаточно, чтобы , то есть Отсюда имеем следующие возможности для y : y = 0, y = 1, y = –1, y = 2, y = –2.

Итак, уравнение имеет ровно 2 целых решения: (0;2), (0;–2).

Ключевая идея – рассмотрение уравнения как квадратного относительно одной из неизвестных.

Составленные автором задачи были использованы при проведении эксперимента, который состоял в следующем. Всем учащимся девятых классов были предложены разработанные задания с целью выявления уровня подготовки детей по данной теме. Каждому из учеников необходимо было предложить метод нахождения целочисленных решений уравнений. В эксперименте приняли участие 64 ученика. Полученные результаты представлены в таблице 1.

ТАБЛИЦА 1

Номер задания

Количество учащихся, справившихся с заданием (в процентах)

Данные показатели говорят о том, что уровень подготовки учащихся девятых классов по данной теме очень низкий. Поэтому целесообразной представляется организация спецкурса «Уравнения в целых числах», который будет направлен на усовершенствование знаний учеников в данной области. Прежде всего, это ученики, которые систематически участвуют в математических конкурсах и олимпиадах, а также планируют сдавать профильный ЕГЭ по математике.

Выводы

В ходе выполнения данной работы:

1) Проанализированы олимпиадные материалы, а также материалы ЕГЭ по математике;

2) Обозначены методы решения уравнений в целых числах и выделены преобладающие;

3) Полученные результаты проиллюстрированы примерами;

4) Составлены тренировочные задания для учащихся девятых классов;

5) Поставлен эксперимент по выявлению уровня подготовки по данной теме учащихся девятых классов;

6) Проанализированы результаты эксперимента и сделаны выводы о целесообразности изучения уравнений в целых числах на математическом спецкурсе.

Результаты, полученные в ходе данного исследования, могут быть использованы при подготовке к математическим олимпиадам, ЕГЭ по математике, а также при проведении занятий математического кружка.

Список литературы

1. Гельфонд А.О. Решение уравнений в целых числах. – М.: Наука, 1983 – 64 с.

2. Алфутова Н.Б. Устинов А.В. Алгебра и теория чисел. Сборник задач для математических школ – М.: МЦНМО, 2009 – 336 с.

3. Гальперин Г.А., Толпыго А.К. Московские математические олимпиады: Кн. для учащихся / Под ред. А.Н. Колмогорова. – М.: Просвещение, 1986. – 303 с., илл.

4. Далингер В.А. Задачи в целых числах – Омск: Амфора, 2010 – 132 с.

5. Гастев Ю. А., Смолянский М. Л. Несколько слов о Великой теореме Ферма // Квант, август 1972.

Глоссарий

Метод бесконечного спуска – метод, разработанный французским математиком П.Ферма (1601–1665), заключающийся в получении противоречия путём построения бесконечно убывающей последовательности натуральных чисел. Разновидность метода доказательства от противного.

Точный (полный) квадрат - квадрат целого числа.

Факториал натурального числа n - произведение всех натуральных чисел от 1 до n включительно.

В курсе математики 7 класса впервые встречаются с уравнениями с двумя переменными , но изучаются они лишь в контексте систем уравнений с двумя неизвестными. Именно поэтому из поля зрения выпадает целый ряд задач, в которых на коэффициенты уравнения введены некоторые условия, их ограничивающие. Кроме того, остаются без внимания и методы решения задач типа «Решить уравнение в натуральных или целых числах», хотя в материалах ЕГЭ и на вступительных экзаменах задачи такого рода встречаются все чаще и чаще.

Какое уравнение будет называться уравнением с двумя переменными?

Так, например, уравнения 5x + 2y = 10, x 2 + y 2 = 20 или xy = 12 являются уравнениями с двумя переменными.

Рассмотрим уравнение 2x – y = 1. Оно обращается в верное равенство при x = 2 и y = 3, поэтому эта пара значений переменных является решением рассматриваемого уравнения.

Таким образом, решением любого уравнения с двумя переменными является множество упорядоченных пар (x; y), значений переменных, которые это уравнение обращают в верное числовое равенство.

Уравнение с двумя неизвестными может:

а) иметь одно решение. Например, уравнение x 2 + 5y 2 = 0 имеет единственное решение (0; 0);

б) иметь несколько решений. Например, (5 -|x|) 2 + (|y| – 2) 2 = 0 имеет 4 решения: (5; 2), (-5; 2), (5; -2), (-5; -2);

в) не иметь решений. Например, уравнение x 2 + y 2 + 1 = 0 не имеет решений;

г) иметь бесконечно много решений. Например, x + y = 3. Решениями этого уравнения будут являться числа, сумма которых равна 3. Множество решений данного уравнения можно записать в виде (k; 3 – k), где k – любое действительное число.

Основными методами решения уравнений с двумя переменными являются методы, основанные на разложении выражений на множители, выделение полного квадрата, использование свойств квадратного уравнения, ограниченности выражений, оценочные методы. Уравнение, как правило, преобразовывают к виду, из которого можно получить систему для нахождения неизвестных.

Разложение на множители

Пример 1.

Решить уравнение: xy – 2 = 2x – y.

Решение.

Группируем слагаемые с целью разложения на множители:

(xy + y) – (2x + 2) = 0. Из каждой скобки вынесем общий множитель:

y(x + 1) – 2(x + 1) = 0;

(x + 1)(y – 2) = 0. Имеем:

y = 2, x – любое действительное число или x = -1, y – любое действительное число.

Таким образом, ответом являются все пары вида (x; 2), x € R и (-1; y), y € R.

Равенство нулю неотрицательных чисел

Пример 2.

Решить уравнение: 9x 2 + 4y 2 + 13 = 12(x + y).

Решение.

Группируем:

(9x 2 – 12x + 4) + (4y 2 – 12y + 9) = 0. Теперь каждую скобку можно свернуть по формуле квадрата разности.

(3x – 2) 2 + (2y – 3) 2 = 0.

Сумма двух неотрицательных выражений равна нулю, только если 3x – 2 = 0 и 2y – 3 = 0.

А значит, x = 2/3 и y = 3/2.

Ответ: (2/3; 3/2).

Оценочный метод

Пример 3.

Решить уравнение: (x 2 + 2x + 2)(y 2 – 4y + 6) = 2.

Решение.

В каждой скобке выделим полный квадрат:

((x + 1) 2 + 1)((y – 2) 2 + 2) = 2. Оценим значение выражений, стоящих в скобках.

(x + 1) 2 + 1 ≥ 1 и (y – 2) 2 + 2 ≥ 2, тогда левая часть уравнения всегда не меньше 2. Равенство возможно, если:

(x + 1) 2 + 1 = 1 и (y – 2) 2 + 2 = 2, а значит x = -1, y = 2.

Ответ: (-1; 2).

Познакомимся с еще одним методом решения уравнений с двумя переменными второй степени. Этот метод заключается в том, что уравнение рассматривается как квадратное относительно какой-либо переменной .

Пример 4.

Решить уравнение: x 2 – 6x + y – 4√y + 13 = 0.

Решение.

Решим уравнение как квадратное относительно x. Найдем дискриминант:

D = 36 – 4(y – 4√y + 13) = -4y + 16√y – 16 = -4(√y – 2) 2 . Уравнение будет иметь решение только при D = 0, т. е. в том случае, если y = 4. Подставляем значение y в исходное уравнение и находим, что x = 3.

Ответ: (3; 4).

Часто в уравнениях с двумя неизвестными указывают ограничения на переменные .

Пример 5.

Решить уравнение в целых числах: x 2 + 5y 2 = 20x + 2.

Решение.

Перепишем уравнение в виде x 2 = -5y 2 + 20x + 2. Правая часть полученного уравнения при делении на 5 дает в остатке 2. Следовательно, x 2 не делится на 5. Но квадрат числа, не делящегося на 5, дает в остатке 1 или 4. Таким образом, равенство невозможно и решений нет.

Ответ: нет корней.

Пример 6.

Решить уравнение: (x 2 – 4|x| + 5)(y 2 + 6y + 12) = 3.

Решение.

Выделим полные квадраты в каждой скобке:

((|x| – 2) 2 + 1)((y + 3) 2 + 3) = 3. Левая часть уравнения всегда больше или равна 3. Равенство возможно при условии |x| – 2 = 0 и y + 3 = 0. Таким образом, x = ± 2, y = -3.

Ответ: (2; -3) и (-2; -3).

Пример 7.

Для каждой пары целых отрицательных чисел (x; y), удовлетворяющих уравнению
x 2 – 2xy + 2y 2 + 4y = 33, вычислить сумму (x + y). В ответе указать наименьшую из сумм.

Решение.

Выделим полные квадраты:

(x 2 – 2xy + y 2) + (y 2 + 4y + 4) = 37;

(x – y) 2 + (y + 2) 2 = 37. Так как x и y – целые числа, то их квадраты также целые числа. Сумму квадратов двух целых чисел, равную 37, получим, если складываем 1 + 36. Следовательно:

(x – y) 2 = 36 и (y + 2) 2 = 1

(x – y) 2 = 1 и (y + 2) 2 = 36.

Решая эти системы и учитывая, что x и y – отрицательные, находим решения: (-7; -1), (-9; -3), (-7; -8), (-9; -8).

Ответ: -17.

Не стоит отчаиваться, если при решении уравнений с двумя неизвестными у вас возникают трудности. Немного практики, и вы сможете справиться с любыми уравнениями.

Остались вопросы? Не знаете, как решать уравнения с двумя переменными?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Нелинейные уравнения с двумя неизвестными

Определение 1 . Пусть A - некоторое множество пар чисел (x ; y ) . Говорят, что на множестве A задана числовая функция z от двух переменных x и y , если указано правило, с помощью которого каждой паре чисел из множества A ставится в соответствие некоторое число.

Задание числовой функции z от двух переменных x и y часто обозначают так:

где f (x , y ) – любая функция, отличная от функции

f (x , y ) = ax +by + c ,

где a , b , c – заданные числа.

Определение 3 . Решением уравнения (2) называют пару чисел (x ; y ) , для которых формула (2) является верным равенством.

Пример 1 . Решить уравнение

Поскольку квадрат любого числа неотрицателен, то из формулы (4) вытекает, что неизвестные x и y удовлетворяют системе уравнений

решением которой служит пара чисел (6 ; 3) .

Ответ : (6 ; 3)

Пример 2 . Решить уравнение

Следовательно, решением уравнения (6) является бесконечное множество пар чисел вида

(1 + y ; y ) ,

где y – любое число.

линейное

Определение 4 . Решением системы уравнений

называют пару чисел (x ; y ) , при подстановке которых в каждое из уравнений этой системы получается верное равенство.

Системы из двух уравнений, одно из которых линейное , имеют вид

g (x , y )

Пример 4 . Решить систему уравнений

Решение . Выразим из первого уравнения системы (7) неизвестное y через неизвестное x и подставим полученное выражение во второе уравнение системы:

Решая уравнение

x 1 = - 1 , x 2 = 9 .

Следовательно,

y 1 = 8 - x 1 = 9 ,
y 2 = 8 - x 2 = - 1 .

Системы из двух уравнений, одно из которых однородное

Системы из двух уравнений, одно из которых однородное , имеют вид

где a , b , c – заданные числа, а g (x , y ) – функция двух переменных x и y .

Пример 6 . Решить систему уравнений

Решение . Решим однородное уравнение

3x 2 + 2xy - y 2 = 0 ,

3x 2 + 17xy + 10y 2 = 0 ,

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = - 5y , из второго уравнения системы (11) получаем уравнение

5y 2 = - 20 ,

которое корней не имеет.

В случае, когда

из второго уравнения системы (11) получаем уравнение

,

корнями которого служат числа y 1 = 3 , y 2 = - 3 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (- 2 ; 3) , (2 ; - 3) .

Ответ : (- 2 ; 3) , (2 ; - 3)

Примеры решения систем уравнений других видов

Пример 8 . Решить систему уравнений (МФТИ)

Решение . Введем новые неизвестные u и v , которые выражаются через x и y по формулам:

Для того, чтобы переписать систему (12) через новые неизвестные, выразим сначала неизвестные x и y через u и v . Из системы (13) следует, что

Решим линейную систему (14), исключив из второго уравнения этой системы переменную x . С этой целью совершим над системой (14) следующие преобразования.

Прошлый видеоматериал был посвящен линейным уравнениям, содержащим две переменные. Мы рассмотрели основные свойства подобных выражений, возможности их преобразования и решения, а также графическое отображение зависимости между двумя переменными.

Известно, что подавляющее большинство этих уравнений имеют множество ответов, представленных всегда парой чисел. Эта пара - значения х и у. Рассмотрим возможные варианты корней уравнения следующего вида:

Очевидно, что корнями данного уравнения может быть пара (4, 6):

Или же дроби 1/5 и 1/3:

5(1/5) - 3(1/3) = 2

В обеих случаях получается верное равенство, значит обе пары корней приемлемы в качестве решения представляемого уравнения. Но при этом одна пара является дробями, а вторая представлена целыми числами. Корни уравнений с двумя переменными, имеющие значения в целых числах именуются цельно численными.
Довольно часто в математике встречаются задачи, требующие именно целочисленные решения подобных уравнений. С другой стороны, некоторые вариации, вроде:

Не имеют цельно численных решений вообще. Так как при любых целых значениях х и у получится целое общее выражение левой части (2х + 3у), которое никак не может быть равно дроби - то есть, нарушится принцип сохранения равенства.
Рассмотрим возможные решения уравнения:

Переведем его в форму зависимости, используя перенос через знак равенства и тождественные преобразования:

Вполне очевидно, что сохраняется равенство вида:

Где n - любое натуральное число, которое вполне может быть целым по значению. То есть, уравнение 7х - у = -1 обладает множеством целочисленных решений. Проверим любые целые числа в качестве х:

х = -3; у = -26

Нам уже известна общая абстрактная формула для определения любого линейного уравнения с двумя переменными:

Где х и у - переменные, а и b - коэффициенты при переменных, а с - свободный член. Любое уравнение, подобное линейным выражениям с х и у, путем равносильных преобразований можно привести к такому абстрактному виду. Подробное изучение общей формулы позволяет с легкостью выявить некоторые закономерности с точки зрения наличия целочисленных решений. Итак, если задано некое уравнение вида:

При котором свободный член является дробью, то корнями уравнения никак не могут быть цельно численные выражения. Сумма или разность двух целых чисел по закону элементарной алгебры не может быть равна дробному выражению.

Из-за большого количества возможных решений, корни уравнений с двумя переменными иногда имеют вид не пары отдельных чисел, а пары двух индивидуальных формул - для х, и для у. Для примера, решим уравнение:

Для этого, нам необходимо совершить ряд преобразований. Разобьем одночлен 20х на тождественную сумму 18х + 2х:

20х = 18х+ 2х

18х + 2х + 3у = 10

Группируем одночлены, имеющие кратные числовые коэффициенты. Стоит отметить, что переменную х необходимо разбивать на сумму так, что бы получился х с коэффициентом максимально большим и кратным при этом для числового коэффициента переменной у. Так как в нашем примере при у стоит тройка, то х мы разбиваем с максимально допустимым коэффициентом, кратным трем. После группировки выносим общий кратный множитель:

18х + 2х + 3у = 10

18х + 3у + 2х = 10

3(6х + у) + 2х = 10

Пусть выражение в скобках (6х + у) равно некой переменной с, тогда:

3(6х + у) + 2х = 10

Разбиваем значение переменной с по такому же принципу, как разбивали коэффициент при х. При этом нам необходимо подобрать некое число, которое будет кратно двойке (значению при 2х), но не больше трех. Очевидно, что это будет так:

2с + с + 2х =10

Проводим тождественные изменения:

2с + с + 2х =10

2(с + х) + с = 10

Обозначим содержимое скобок, как n, тогда:

2(с + х) + с = 10

Подставляем получившееся равенство вместо с:

3(10 - 2n) + 2х = 10

И решаем полученное уравнение относительно переменной х:

3(10 - 2n) + 2х = 10

30 - 6n + 2х = 10

2х = 10 + 6n - 30

То уместно записать:

6х + у = n - х

Подставляем известную нам формулу для х, что бы вычислить у:

6х + у = n - х

6(- 10 + 3n) + у = n - (- 10 + 3n)

60 + 18n + у = n + 10 - 3n

у = n + 10 - 3n + 60 - 18n

Корнями уравнения 20х + 3у = 10 являются два выражения вида:

Где n - любое целое число - 0, 1, 2 и т.д. Таким образом, чтобы описать все многообразие возможных целочисленных решений, проще всего вычислить некоторые формулы для быстрого расчета х и у. Подставляя любые выражения n в эти формулы, можно с легкостью получить искомую пару чисел.

  1. Уравнения первой степени с двумя неизвестными
  1. Примеры уравнений второй степени с тремя неизвестными
  1. Общий случай уравнения второй степени с двумя неизвестными

Р А З Р А Б О Т К А П Р О Г Р А М М

  1. Программа №1 (уравнения с одним неизвестным)

ВВЕДЕНИЕ

Мой курсовой проект посвящен одному из наиболее интересных разделов теории чисел - решению уравнений в целых числах.

Решение в целых числах алгебраических уравнений с целыми коэффициентами более чем с одним неизвестным представляет собой одну из труднейших проблем теории чисел.

Проблема решения уравнений в целых числах решена до конца только для уравнений второй степени с двумя неизвестными. Отметим, что для уравнений любой степени с одним неизвестным она не представляет сколько-нибудь существенного интереса, так как эта задача может быть решена с помощью конечного числа проб. Для уравнений выше второй степени с двумя или более неизвестными весьма трудна не только задача нахождения всех решений в целых числах, но даже и более простая задача установления существования конечного или бесконечного множества таких решений.

В своем проекте я постаралась изложить некоторые основные результаты, полученные в теории; решения уравнений в целых числах. Теоремы, формулируемые в нем, снабжены доказательствами в тех случаях, когда эти доказательства достаточно просты.


1. УРАВНЕНИЯ С ОДНИМ НЕИЗВЕСТНЫМ

Рассмотрим уравнение первой степени с одним неизвестным

Пусть коэффициенты уравнения

и - целые числа. Ясно, что решение этого уравнения

будет целым числом только в том случае, когда

нацело делится на . Таким образом, уравнение (1) не всегда разрешимо в целых числах; так, например, из двух уравнений и первое имеет целое решение , а второе в целых числах неразрешимо.

С тем же обстоятельством мы встречаемся и в случае уравнений, степень которых выше первой: квадратное уравнение

имеет целые решения , ; уравнение в целых числах неразрешимо, так как его корни ,иррациональны.

Вопрос о нахождении целых корней уравнения n-ой степени с целыми коэффициентами

(2)

решается легко. Действительно, пусть

- целый корень этого уравнения. Тогда
, .

Из последнего равенства видно, что

делится без остатка; следовательно, каждый целый корень уравнения (2) является делителем свободного члена уравнения. Для нахождения целых решений уравнения надо выбрать те из делителей , которые при подстановке в уравнение обращают его в тождество. Так, например, из чисел 1, -1, 2 и -2, представляющих собой все делители свободного члена уравнения
,

только -1 является корнем. Следовательно это уравнение, имеет единственный целый корень

. Тем же методом легко показать, что уравнение

в целых числах неразрешимо.

Значительно больший интерес представляет решение в целых числах уравнении с многими неизвестными.

2. УРАВНЕНИЯ ПЕРВОЙ СТЕПЕНИ С ДВУМЯ НЕИЗВЕСТНЫМИ

Рассмотрим уравнение первой степени с двумя неизвестными

, (3)
и - целые числа, отличные от нуля, а - произвольное целое. Будем считать, что коэффициенты и не имеют общих делителей, кроме единицы. Действительно, если общий наибольший делитель этих коэффициентов отличен от единицы, то справедливы равенства , ; уравнение (3) принимает вид

и может иметь целые решения только в том случае, когда

делится на . Таким образом, в случае - все коэффициенты уравнения (3) должны делиться нацело на , и, сокращая (3) на , придем к уравнению
,

коэффициенты которого

и взаимно просты.

Рассмотрим сначала случай, когда