Найти экстремумы функции на заданных отрезках. Второй признак экстремума функции. Наибольшее и наименьшее значения функции на отрезке

Найти экстремумы функции на заданных отрезках. Второй признак экстремума функции. Наибольшее и наименьшее значения функции на отрезке

Функция y = f (x ) называется возрастающей (убывающей ) в некотором интервале, если при x 1 < x 2 выполняется неравенство (f (x 1) < f (x 2) (f (x 1) > f (x 2)).

Если дифференцируемая функция y = f (x ) на отрезке возрастает (убывает), то ее производная на этом отрезке f " (x ) > 0

(f " (x ) < 0).

Точка x о называется точкой локального максимума (минимума ) функции f (x ), если существует окрестность точки x о , для всех точек которой верно неравенство f (x ) ≤ f (x о ) (f (x ) f (x о )).

Точки максимума и минимума называются точками экстремума , а значения функции в этих точках - ее экстремумами.

Точки экстремума

Необходимые условия экстремума . Если точка x о является точкой экстремума функции f (x ), то либо f " (x о ) = 0, либо f (x о ) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть x о - критическая точка. Если f " (x ) при переходе через точку x о меняет знак плюс на минус, то в точке x о функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке x о экстремума нет.

Второе достаточное условие. Пусть функция f (x ) имеет
f "
(x ) в окрестности точки x о и вторую производную f "" (x 0) в самой точке x о . Если f " (x о ) = 0, f "" (x 0)>0 (f "" (x 0)<0), то точка x о является точкой локального минимума (максимума) функции f (x ). Если же f "" (x 0)=0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие .

На отрезке функция y = f (x ) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

Пример 3.22.

Решение. Так как f " (

Задачи на нахождения экстремума функции

Пример 3.23. a

Решение. x и y y
0
x
> 0, а при x >a /4 S " < 0, значит, в точке x=a /4 функция S имеет максимум. Значение функции кв . ед ).

Пример 3.24. p ≈

Решение. p p
S "

R = 2, Н = 16/4 = 4.

Пример 3.22. Найти экстремумы функции f (x ) = 2x 3 - 15x 2 + 36x - 14.

Решение. Так как f " (x ) = 6x 2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x 1 = 2 и x 2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x 1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x 2 = 3 производная меняет знак минус на плюс, поэтому в точке x 2 = 3 у функции минимум. Вычислив значения функции в точках
x 1 = 2 и x 2 = 3, найдем экстремумы функции: максимум f (2) = 14 и минимум f (3) = 13.

Пример 3.23. Нужно построить прямоугольную площадку возле каменной стены так, чтобы с трех сторон она была отгорожена проволочной сеткой, а четвертой стороной примыкала к стене. Для этого имеется a погонных метров сетки. При каком соотношении сторон площадка будет иметь наибольшую площадь?

Решение. Обозначим стороны площадки через x и y . Площадь площадки равна S = xy . Пусть y - это длина стороны, примыкающей к стене. Тогда по условию должно выполняться равенство 2x + y = a . Поэтому y = a - 2x и S = x (a - 2x), где
0
x a /2 (длина и ширина площадки не могут быть отрицательными). S " = a - 4x, a - 4x = 0 при x = a/4, откуда
y = a - 2 × a/4 =a/2. Поскольку x = a /4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При x a /4 S " > 0, а при x >a /4 S " < 0, значит, в точке x=a /4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a 2 /8 (кв . ед ). Поскольку S непрерывна на и ее значения на концах S(0) и S(a /2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.

Пример 3.24. Требуется изготовить закрытый цилиндрический бак вместимостью V=16 p ≈ 50 м 3 . Каковы должны быть размеры бака (радиус R и высота Н), чтобы на его изготовление пошло наименьшее количество материала?

Решение. Площадь полной поверхности цилиндра равна S = 2 p R(R+Н). Мы знаем объем цилиндра V = p R 2 Н Þ Н = V/ p R 2 =16 p / p R 2 = 16/ R 2 . Значит, S(R) = 2 p (R 2 +16/R). Находим производную этой функции:
S "
(R) = 2 p (2R- 16/R 2) = 4 p (R- 8/R 2). S " (R) = 0 при R 3 = 8, следовательно,
R = 2, Н = 16/4 = 4.

Найдите наибольшее значение функции y=(7x^2-56x+56)e^x на отрезке [-3; 2].

Показать решение

Решение

Найдём производную исходной функции по формуле производной произведения y"= (7x^2-56x+56)"e^x\,+ (7x^2-56x+56)\left(e^x\right)"= (14x-56)e^x+(7x^2-56x+56)e^x= (7x^2-42x)e^x= 7x(x-6)e^x. Вычислим нули производной: y"=0;

7x(x-6)e^x=0,

x_1=0, x_2=6.

Расставим знаки производной и определим промежутки монотонности исходной функции на заданном отрезке.

Из рисунка видно, что на отрезке [-3; 0] исходная функция возрастает, а на отрезке — убывает. Таким образом, наибольшее значение на отрезке [-3; 2] достигается при x=0 и равно y(0)= 7\cdot 0^2-56\cdot 0+56=56.

Ответ

Условие

Найдите наибольшее значение функции y=12x-12tg x-18 на отрезке \left.

Показать решение

Решение

y"= (12x)"-12(tg x)"-(18)"= 12-\frac{12}{\cos ^2x}= \frac{12\cos ^2x-12}{\cos ^2x}\leqslant0. Значит, исходная функция является невозрастающей на рассматриваемом промежутке и принимает наибольшее значение на левом конце отрезка, то есть при x=0. Наибольшее значение равно y(0)= 12\cdot 0-12 tg (0)-18= -18.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

Найдите точку минимума функции y=(x+8)^2e^{x+52}.

Показать решение

Решение

Будем находить точку минимума функции с помощью производной. Найдём производную заданной функции, пользуясь формулами производной произведения, производной x^\alpha и e^x:

y"(x)= \left((x+8)^2\right)"e^{x+52}+(x+8)^2\left(e^{x+52}\right)"= 2(x+8)e^{x+52}+(x+8)^2e^{x+52}= (x+8)e^{x+52}(2+x+8)= (x+8)(x+10)e^{x+52}.

Расставим знаки производной и определим промежутки монотонности исходной функции. e^{x+52}>0 при любом x . y"=0 при x=-8, x=-10.

Из рисунка видно, что функция y=(x+8)^2e^{x+52} имеет единственную точку минимума x=-8.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

Найдите точку максимума функции y=8x-\frac23x^\tfrac32-106.

Показать решение

Решение

ОДЗ: x \geqslant 0. Найдём производную исходной функции:

y"=8-\frac23\cdot\frac32x^\tfrac12=8-\sqrt x.

Вычислим нули производной:

8-\sqrt x=0;

\sqrt x=8;

x=64.

Расставим знаки производной и определим промежутки монотонности исходной функции.

Из рисунка видно, что точка x=64 является единственной точкой максимума заданной функции.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

Найдите наименьшее значение функции y=5x^2-12x+2\ln x+37 на отрезке \left[\frac35; \frac75\right].

Показать решение

Решение

ОДЗ: x>0.

Найдём производную исходной функции:

y"(x)= 10x-12+\frac{2}{x}= \frac{10x^2-12x+2}{x}.

Определим нули производной: y"(x)=0;

\frac{10x^2-12x+2}{x}=0,

5x^2-6x+1=0,

x_{1,2}= \frac{3\pm\sqrt{3^2-5\cdot1}}{5}= \frac{3\pm2}{5},

x_1=\frac15\notin\left[\frac35; \frac75\right],

x_2=1\in\left[\frac35; \frac75\right].

Расставим знаки производной и определим промежутки монотонности исходной функции на рассматриваемом промежутке.

Из рисунка видно, что на отрезке \left[\frac35; 1\right] исходная функция убывает, а на отрезке \left возрастает. Таким образом, наименьшее значение на отрезке \left[\frac35; \frac75\right] достигается при x=1 и равно y(1)= 5\cdot 1^2-12\cdot 1+2 \ln 1+37= 30.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

Найдите наибольшее значение функции y=(x+4)^2(x+1)+19 на отрезке [-5; -3].

Показать решение

Решение

Найдём производную исходной функции, используя формулу производной произведения.

Из данной статьи читатель узнает о том, что такое экстремум функционального значения, а также об особенностях его использования в практической деятельности. Изучение такого концепта крайне важно для понимания основ высшей математики. Эта тема является основополагающей для более глубокого изучения курса.

Вконтакте

Что такое экстремум?

В школьном курсе дается множество определений понятия «экстремум». Данная статья призвана дать самое глубокое и четкое представление о термине для несведущих в вопросе лиц. Итак, под термином понимают, насколько функциональный промежуток приобретает минимальное либо максимальное значение на том или ином множестве.

Экстремум – это и минимальное значение функции, и максимальное одновременно. Различают точку минимума и точку максимума, то есть крайние значения аргумента на графике. Основные науки, в которых используют данный концепт:

  • статистика;
  • машинное управление;
  • эконометрика.

Точки экстремума играют важную роль в определении последовательности заданной функции. Система координат на графике в лучшем виде показывает изменение экстремального положения в зависимости от изменения функциональности.

Экстремумы производной функции

Имеет также место такое явление, как «производная». Она необходима для определения точки экстремума. Важно не путать точки минимума либо максимума с наибольшим и наименьшим значением. Это разные понятия, хотя могут показаться похожими.

Значение функции является основным фактором для определения того, как найти точку максимума. Производная не образуется от значений, а исключительно от крайнего ее положения в том или ином его порядке.

Сама же по себе производная определяется на основе данных точек экстремума, а не наибольшего или наименьшего значения. В российских школах недостаточно четко проводят грань между этими двумя концептами, что влияет на понимание данной темы вообще.

Давайте теперь рассмотрим такое понятие как «острый экстремум». На сегодняшний день выделяют острый минимум значения и острый максимум значения. Определение дано в соответствии с российской классификацией критических точек функции. Концепт точки экстремума лежит в основе нахождения критических точек на графике.

Для определения такого понятия прибегают к использованию теоремы Ферма. Она является важнейшей в ходе изучения крайних точек и дает четкое представление об их существовании в том или ином их виде. Для обеспечения экстремальности важно создать определенные условия для убывания либо возрастания на графике.

Для точного ответить на вопрос «как найти точку максимума», необходимо следовать таким положениям:

  1. Нахождение точной области определения на графике.
  2. Поиск производной функции и точки экстремума.
  3. Решать стандартные неравенства на область нахождения аргумента.
  4. Уметь доказывать, в каких функциях точка на графике определена и непрерывна.

Внимание! Поиск критической точки функции возможен только в случае существования производной не менее второго порядка, что обеспечивается высокой долей наличия точки экстремума.

Необходимое условие экстремума функции

Для того чтобы существовал экстремум, важно, чтобы были как точки минимума, так и точки максимума. В случае если это правило соблюдено лишь частично, то условие существование экстремума нарушается.

Каждая функция в любом положении должна быть продифференцирована с целью выявления ее новых значений. Важно понимать, что случай обращения точки в ноль не является основным принципом нахождения дифференцируемой точки.

Острый экстремум, также как и минимум функции – это крайне важный аспект решения математической задачи с использованием экстремальных значений. Для того чтобы лучше понимать данную составляющую, важно обратиться к табличным значениям по заданию функционала.

Полное исследование значения Построение графика значения
1. Определение точек возрастания и убывания значений.

2. Нахождение точек разрыва, экстремума и пересечение с координатными осями.

3. Процесс определения изменений положения на графике.

4. Определение показателя и направления выпуклости и выгнутости с учетом наличия асимптот.

5. Создание сводной таблицы исследования с точки зрения определения ее координат.

6. Нахождение промежутков возрастания и убывания крайних и острых точек.

7. Определение выпуклости и вогнутости кривой.

8. Построение графика с учетом исследования позволяет найти минимум либо максимум.

Основным элементом при необходимости работы с экстремумами является точное построение его графика.

Школьные учителя не часто уделяют столь важному аспекту максимум внимания, что является грубейшим нарушением учебного процесса.

Построение графика происходит только по итогам исследования функциональных данных, определения острых экстремумов, а также точек на графике.

Острые экстремумы производной функции отображаются на графике точных значений, с использованием стандартной процедуры определения асимптот.

Точки максимума и минимума функции сопровождаются более сложными построениями графика. Это обусловлено более глубокой необходимостью прорабатывать проблему острого экстремума.

Необходимо также находить производную сложной и простой функции, так как это одно из самых главных понятий проблематики экстремума.

Экстремум функционала

Для того чтобы отыскать вышеозначенное значение, необходимо придерживаться следующих правил:

  • определить необходимое условие экстремального отношения;
  • учитывать достаточное условие крайних точек на графике;
  • осуществлять расчет острого экстремума.

Используются также такие понятия, как слабый минимум и сильный минимум. Это необходимо учитывать при определении экстремума и точного его расчета. При этом острый функционал – это поиск и создание всех необходимых условий для работы с графиком функции.

Точка х 0 называетсяточкой максимума (минимума ) функцииf(х), если в некоторой окрестности точки х 0 выполняется неравенствоf(х) ≤f(х 0) (f(х) ≥f(х 0)).

Значение функции в этой точке называется соответственно максимумом илиминимумом функции. Максимум и минимум функции объединяются общим названиемэкстремума функции.

Экстремум функции в этом смысле часто называют локальным экстремумом , подчеркивая тот факт, что это понятие связано лишь с достаточно малой окрестностью точки х 0 . На одном и том же промежутке функция может иметь несколько локальных максимумов и минимумов, которые не обязательно совпадают сглобальным максимумом илиминимумом (т.е. наибольшим или наименьшим значением функции на всем промежутке).

Необходимое условие экстремума . Для того, чтобы функция имела экстремум в точке, необходимо, чтобы ее производная в этой точке равнялась нулю или не существовала.

Для дифференцируемых функций это условие вытекает из теоремы Ферма. Кроме того, оно предусматривает и случай, когда функция имеет экстремум в точке, в которой она не дифференцируема.

Точки, в которых выполнено необходимое условие экстремума, называются критическими (илистационарными для дифференцируемой функции). Эти точки должны входить в область определения функции.

Таким образом, если в какой-либо точке имеется экстремум, то эта точка критическая (необходимость условия). Заметим, что обратное утверждение неверно. Критическая точка вовсе не обязательно является точкой экстремума, т.е. сформулированное условие не является достаточным.

Первое достаточное условие экстремума . Если при переходе через некоторую точку производная дифференцируемой функции меняет свой знак с плюса на минус, то это точка максимума функции, а если с минуса на плюс, - то точка минимума.

Доказательство этого условия вытекает из достаточного условия монотонности (при изменении знака производной происходит переход либо от возрастания функции к убыванию, либо от убывания к возрастанию).

Второе достаточное условие экстремума . Если первая производная дважды дифференцируемой функции в некоторой точке равна нулю, а вторая производная в этой точке положительна, то это точка минимума функции; а если вторая производная отрицательна, то это точка максимума.

Доказательство этого условия также основано на достаточном условии монотонности. В самом деле, если вторая производная положительна, то первая производная является возрастающей функцией. Поскольку в рассматриваемой точке она равна нулю, следовательно, при переходе через нее она меняет знак с минуса на плюс, что возвращает нас к первому достаточному условию локального минимума. Аналогично если вторая производная отрицательна, то первая убывает и меняет знак с плюса на минус, что является достаточным условием локального максимума.

Исследование функции на экстремум в соответствии со сформулированными теоремами включает следующие этапы:

1. Найти первую производную функции f`(x).

2. Проверить выполнение необходимого условия экстремума, т.е. найти критические точки функции f(x), в которых производнаяf`(x) = 0 или не существует.

3. Проверить выполнение достаточного условия экстремума, т.е. либо исследовать знак производной слева и справа от каждой критической точки, либо найти вторую производную f``(x) и определить ее знак в каждой критической точке. Сделать вывод о наличии экстремумов функции.

4. Найти экстремумы (экстремальные значения) функции.

Нахождение глобального максимума и минимума функции на некотором промежутке также имеет большое прикладное значение. Решение этой задачи на отрезке основано на теореме Вейерштрасса, в соответствии с которой непрерывная функция принимает на отрезке свои наибольшее и наименьшее значения. Они могут достигаться как в точках экстремума, так и на концах отрезка. Поэтому решение включает следующие этапы:

1. Найти производную функции f`(x).

2. Найти критические точки функции f(x), в которых производнаяf`(x) = 0 или не существует.

3. Найти значения функции в критических точках и на концах отрезка и выбрать из них наибольшее и наименьшее.

\(\DeclareMathOperator{\tg}{tg}\)\(\DeclareMathOperator{\ctg}{ctg}\)\(\DeclareMathOperator{\arctg}{arctg}\)\(\DeclareMathOperator{\arcctg}{arcctg}\)

Содержание

Монотонность функции на интервале Если на интервале \((a;b)\) для любой пары точек \({x_1}возрастает на этом интервале.

Если на интервале \((a;b)\) для любой пары точек \({x_1}{f(x_2)}\), то функция \(f(x)\) убывает на этом интервале.

Функция, график которой изображен на рисунке, возрастает на интервале \((a;b)\) и убывает на интервале \((b;c)\).

Достаточные признаки монотонности функции на интервале Достаточный признак возрастания функции
Если \(f"(x)>0\) во всех точках \(x\in(a;b)\), то функция \(f(x)\) возрастает на интервале \((a;b)\).

Достаточный признак убывания функции
Если \(f"(x)

Точки локальных экстремумов Если в некотором интервале \((a;b)\), содержащем точку \(x_0\) для всех \(x\in(a;b)\) выполняется неравенство \(f(x)\geqslant f(x_0)\), причем в этом интервале найдется такая точка \(x_1\), что \(f(x_1)>f(x_0)\), то \(x_0\) - точка локального минимума функции \(f(x)\).

Если в некотором интервале \((a;b)\), содержащем точку \(x_0\) для всех \(x\in(a;b)\) выполняется неравенство \(f(x)\leqslant f(x_0)\), причем в этом интервале найдется такая точка \(x_1\), что \(f(x_1) точка локального максимума функции \(f(x)\).

Точки локальных минимумов и максимумов называются точками локальных экстремумов .

На рисунке ниже изображен график функции \(f(x)\) и отмечены точки его локальных экстремумов: \(x_1,\; x_2,\; x_3,\; x_4\).

\(x_1\) и \(x_3\) - точки локальных минимумов, \(x_2\) и \(x_4\) - точки локальных максимумов.
В точках \(x_1,\; x_3\) и \(x_4\) производная существует и равна нулю - касательные к графику (изображены красными линиями) в этих точках параллельны оси абсцисс.
В точке \(x_2\) производная не определена. В этой точке касательную к графику провести нельзя.

Признаки максимума и минимума Если в точке \(x_0\) функция \(f\) непрерывна, а её производная \(f’\) меняет свой знак с плюса на минус в этой точке (то есть, существует такой интервал \((a;x_0)\), что \(f’>0\) на \((a;x_0)\) и такой интервал \((x_0;b)\), что \(f’
Если в точке \(x_0\) функция \(f\) непрерывна, а её производная \(f’\) меняет свой знак с минуса на плюс в этой точке (то есть, существует такой интервал \((a;x_0)\), что \(f’ 0\) на \((x_0;b)\)), то \(x_0\) - точка минимума функции \(f\).

Точки минимума и максимума функции - это точки области определения этой функции (то есть, значения \(x\)). Значения функции в этих точках (значения \(y\), соответствующие этим \(x\)) называются минимумами и максимумами функции соответственно.

Например, для функции \(y=x^2+1\): \(\;x=0\) - точка минимума, а \(y(0)=1\) - минимум.

Нахождение точек минимума и максимума Для нахождения точек минимума и максимума непрерывной функции \(f(x)\) нужно:

2) найти нули производной (решить уравнение \(f"(x)=0\)) и точки, в которых производная не определена;

3) найти знаки производной на каждом из получившихся промежутков;

4) те точки, в которых функция \(f\) непрерывна, а её производная меняет знак с “+” на “-“ - точки максимума этой функции,

те точки, в которых функция \(f\) непрерывна, а её производная меняет знак с “-“ на “+” - точки минимума этой функции.

Наибольшее и наименьшее значение функции на отрезке Непрерывная на отрезке функция достигает своего наибольшего и наименьшего значения на этом отрезке.

Для нахождения наибольшего и наименьшего значения непрерывной функции \(f(x)\) на отрезке нужно:

1) найти производную \(f"(x)\) этой функции;

2) найти критические точки , то есть нули производной (решить уравнение \(f"(x)=0\)) и точки, в которых производная не определена;

3) найти значение функции в критических точках, а так же на концах отрезка;

4) наибольшее из полученных значений будет являться наибольшим значением функции на данном отрезке,

наименьшее из полученных значений будет являться наименьшим значением функции на данном отрезке.

Наибольшее значение функции \(f(x)\) на отрезке \(\) обозначается \(\max\limits_{}f(x)\)

Наименьшее значение функции \(f(x)\) на отрезке \(\) обозначается \(\min\limits_{}f(x)\)