Определение уравнения линии. Уравнением линии на плоскости XOY называется уравнение, которому. Рис.6. Векторное уравнение линии

Определение уравнения линии. Уравнением линии на плоскости XOY называется уравнение, которому. Рис.6. Векторное уравнение линии

Решение уравнения

Иллюстрация графического метода нахождения корней уравнения

Решение уравнения - задача по нахождению таких значений аргументов, при которых это равенство достигается. На возможные значения аргументов могут быть наложены дополнительные условия (целочисленности, вещественности и т. д.).

При подстановке другого корня получается неправильное утверждение:

.

Таким образом, второй корень нужно отбросить, как посторонний.

Виды уравнений

Различают алгебраические , параметрические , трансцендентные , функциональные , дифференциальные и другие виды уравнений.

Некоторые классы уравнений имеют аналитические решения, которые удобны тем, что не только дают точное значение корня, а позволяют записать решение в виде формулы, в которую могут входить параметры. Аналитические выражения позволяют не только вычислить корни, а провести анализ их существования и их количества в зависимости от значений параметров, что часто бывает даже важнее для практического применения, чем конкретные значения корней.

К уравнениям, для которых известны аналитические решения, относятся алгебраические уравнения, не выше четвёртой степени: линейное уравнение , квадратное уравнение , кубическое уравнение и уравнение четвёртой степени . Алгебраические уравнения высших степеней в общем случае аналитического решения не имеют, хотя некоторые из них можно свести к уравнениям низших степеней.

Уравнение, в которые входят трансцендентные функции называются трансцендентными. Среди них аналитические решения известны для некоторых тригонометрических уравнений, поскольку нули тригонометрических функций хорошо известны.

В общем случае, когда аналитического решения найти не удается, применяют численные методы . Численные методы не дают точного решения, а только позволяют сузить интервал , в котором лежит корень, до определенного заранее заданного значения.

Примеры уравнений

См. также

Литература

  • Бекаревич, А. Б. Уравнения в школьном курсе математики / А. Б. Бекаревич. - М., 1968.
  • Маркушевич, Л. А. Уравнения и неравенства в заключительном повторении курса алгебры средней школы / Л. А. Маркушевич, Р. С. Черкасов. / Математика в школе. - 2004. - № 1.
  • Каплан Я. В. Рівняння. - Киев: Радянська школа, 1968.
  • Уравнение - статья из Большой советской энциклопедии
  • Уравнения // Энциклопедия Кольера. - Открытое общество. 2000.
  • Уравнение // Энциклопедия Кругосвет
  • Уравнение // Математическая энциклопедия. - М.: Советская энциклопедия. И. М. Виноградов. 1977-1985.

Ссылки

  • EqWorld - Мир математических уравнений - содержит обширную информацию о математических уравнениях и системах уравнений.

Wikimedia Foundation . 2010 .

Синонимы :

Антонимы :

  • Хаджимба, Рауль Джумкович
  • ЕС ЭВМ

Смотреть что такое "Уравнение" в других словарях:

    УРАВНЕНИЕ - (1) математическая запись задачи о разыскании таких значений аргументов (см. (2)), при которых значения двух данных (см.) равны. Аргументы, от которых зависят эти функции, называют неизвестными, а значения неизвестных, при которых значения… … Большая политехническая энциклопедия

    УРАВНЕНИЕ - УРАВНЕНИЕ, уравнения, ср. 1. Действие по гл. уравнять уравнивать и состояние по гл. уравняться уравниваться. Уравнение в правах. Уравнение времени (перевод истинного солнечного времени в среднее солнечное время, принятое в общежитии и в науке;… … Толковый словарь Ушакова

    УРАВНЕНИЕ - (equation) Требование того, чтобы математическое выражение принимало определенное значение. Например, квадратное уравнение записывается в виде: ах2+bх+с=0. Решением является такие значения х, при котором данное уравнение становится тождеством. В… … Экономический словарь

    УРАВНЕНИЕ - математическая запись задачи о разыскании значений аргументов, при которых значения двух данных функций равны. Аргументы, от которых зависят эти функции, называются неизвестными, а значения неизвестных, при которых значения функций равны,… … Большой Энциклопедический словарь

    УРАВНЕНИЕ - УРАВНЕНИЕ, два выражения, соединенные знаком равенства; в эти выражения входят одна или несколько переменных, называемых неизвестными. Решить уравнение значит найти все значения неизвестных, при которых оно обращается в тождество, или установить … Современная энциклопедия


Если указано правило, согласно которому с каждой точкой М плоскости (или какой-нибудь части плоскости) сопоставляется некоторое число u, то говорят, что на плоскости (или на части плоскости) «задана функция точки»; задание функции символически выражается равенством вида u=f(M). Число u, сопоставляемое с точкой М, называется значением данной функции в точке М. Например, если А - фиксированная точка плоскости, М - произвольная точка, то расстояние от А до М есть функция точки М. В данном случае f(m)=AM.

Пусть дана некоторая функция u=f(M) и вместе с тем введена система координат. Тогда произвольная точка М определяется координатами x, y. Соответственно этому и значение данной функции в точке М определяется координатами x, y, или, как еще говорят, u=f(M) есть функция двух переменных x и y . Функция двух переменных x и y обозначается символом f(x; y): если f(M)=f(x;y), то формула u=f(x; y) называется выражением данной функции в выбранной системе координат. Так, в предыдущем примере f(M)=AM; если ввести декартову прямоугольную систему координат с началом в точке А, то получим выражение этой функции:

u=sqrt(x^2 + y^2)

ЗАДАЧА 3688 Дана функция f (x, y)=x^2–y^2–16.

Дана функция f (x, y)=x^2–y^2–16. Определить выражение этой функции в новой системе координат, если координатные оси повернуты на угол –45 градусов.

Параметрические уравнения линии


Обозначим буквами х и у координаты некоторой точки М; рассмотрим две функции аргумента t:

x=φ(t), y=ψ(t) (1)

При изменении t величины х и у будут, вообще говоря, меняться, следовательно, точка М будет перемещаться. Равенства (1) называются параметрическими уравнениями линии , которая является траекторией точки М; аргумент t носит название параметра. Если из равенств (1) можно исключить параметр t, то получим уравнение траектории точки М в виде

Пусть на плоскости  задана декартова прямоугольная система координат Оху и некоторая линия L.

Определение . Уравнение F(x;y)=0 (1) называется уравнением линии L (относительно заданной системы координат), если этому уравнению удовлетворяют координаты х и у любой точки, лежащей на линии L, и не удовлетворяют координаты х и у ни одной точки, не лежащей на линии L.

Т.о. линией на плоскости называется геометрическое место точек {M(x;y)}, координаты которых удовлетворяют уравнению (1).

Уравнение (1) определяет линию L.

Пример. Уравнение окружности.

Окружность – множество точек, равноудаленных от заданной точки М 0 (х 0 ,у 0).

Точка М 0 (х 0 ,у 0) – центр окружности .

Для любой точки М(х;у), лежащей на окружности, расстояние ММ 0 =R (R=const)

ММ 0 ==R

(х-х 0 ) 2 +(у-у 0 ) 2 =R 2 –(2) уравнение окружности радиуса R с центром в точке М 0 (х 0 ,у 0).

Параметрическое уравнение линии.

Пусть координаты х и у точек линии L выражаются при помощи параметра t:

(3) – параметрическое уравнение линии в ДСК

где функции (t) и (t) непрерывны по параметру t (в некоторой области изменения этого параметра).

Исключая из уравнения (3) параметр t, получим уравнение (1).

Рассмотрим линию L как путь, пройденный материальной точкой, непрерывно движущейся по определенному закону. Пусть переменная t представляет собой время, отсчитываемое от некоторого начального момента. Тогда задание закона движения представляет собой задание координат х и у движущейся точки как некоторых непрерывных функций х=(t) и у=(t) времени t.

Пример . Выведем параметрическое уравнение окружности радиуса r>0 с центром в начале координат. Пусть М(х,у) – произвольная точка этой окружности, а t – угол между радиус-вектором и осью Ох, отсчитываемый против часовой стрелки.

Тогда x=r cos x y=r sin t. (4)

Уравнения (4) представляют собой параметрические уравнения рассматриваемой окружности. Параметр t может принимать любые значения, но для того, чтобы точка М(х,у) один раз обошла окружность, область изменения параметра ограничивается полусегментом 0t2.

Возведя в квадрат и сложив уравнения (4), получим общее уравнение окружности (2).

2. Полярная система координат (пск).

Выберем на плоскости ось L (полярная ось ) и определим точку этой оси О (полюс ). Любая точка плоскости однозначно задается полярными координатами ρ и φ, где

ρ – полярный радиус , равный расстоянию от точки М до полюса О (ρ≥0);

φ –угол между направлением вектора ОМ и осью L (полярный угол ). М(ρ; φ)

Уравнение линии в ПСК может быть записано:

ρ=f(φ) (5) явное уравнение линии в ПСК

F=(ρ; φ) (6) неявное уравнение линии в ПСК

Связь между декартовыми и полярными координатами точки.

(х;у) (ρ; φ) Из треугольника ОМА:

tg φ=(восстановление угла φ по известному тангенсу производится с учетом того, в каком квадранте находится точка М).(ρ; φ)(х;у). х=ρcos φ, y= ρsin φ

Пример . Найти полярные координаты точек М(3;4) и Р(1;-1).

Для М:=5, φ=arctg (4/3). Для Р: ρ=; φ=Π+arctg(-1)=3Π/4.

Классификация плоских линий.

Определение 1. Линия называется алгебраической, если в некоторой декартовой прямоугольной системе координат, если она определяется уравнением F(x;y)=0 (1), в котором функция F(x;y) представляет собой алгебраический многочлен.

Определение 2. Всякая не алгебраическая линия называется трансцендентной .

Определение 3 . Алгебраическая линия называется линией порядка n , если в некоторой декартовой прямоугольной системе координат эта линия определяется уравнением (1), в котором функция F(x;y) представляет собой алгебраический многочлен n-й степени.

Т.о., линией n-го порядка называется линия, определяемая в некоторой декартовой прямоугольной системе алгебраическим уравнением степени n с двумя неизвестными.

Установлению корректности определений 1,2,3 способствует следующая теорема.

Теорема (док-во на с.107). Если линия в некоторой декартовой прямоугольной системе координат определяется алгебраическим уравнением степени n, то эта линия и в любой другой декартовой прямоугольной системе координат определяется алгебраическим уравнением той же степени n.

Равенство вида F(x, у) = 0 называется уравнением с двумя переменными х, у, если оно справедливо не для всяких пар чисел х, у. Говорят, что два числа х = x 0 , у = y 0 удовлетворяют некоторому уравнению вида F(x, y) = 0, если при подстановке этих чисел вместо переменных х и у в уравнение его левая часть обращается в нуль.

Уравнением данной линии (в назначенной системе координат) называется такое уравнение с двумя переменными, которому удовлетворяют координаты каждой точки, лежащей на этой линии, и не удовлетворяют координаты каждой точки, не лежащей на ней.

В дальнейшем вместо выражения «дано уравнение линии F(x, у) = 0» мы часто будем говорить короче: дана линия F(x, у) = 0.

Если даны уравнения двух линий F(x, у)= 0 и Ф(x, у) = 0, то совместное решение системы

F(x,y) = 0, Ф(х, у) = 0

дает все точки их пересечения. Точнее, каждая пара чисел, являющаяся совместным решением этой системы, определяет одну из точек пересечения,

157. Даны точки *) M 1 (2; -2), М 2 (2; 2), M 3 (2; - 1), M 4 (3; -3), M 5 (5; -5), М 6 (3; -2). Установить, какие из данных точек лежат на линии, определенной уравнением х + y = 0, и какие не лежат на ней. Какая линия определена данным уравнением? (Изобразить ее на чертеже.)

158. На линии, определенной уравнением х 2 + у 2 = 25, найти точки, абсциссы которых равны следующим числам: 1) 0, 2) -3, 3) 5, 4) 7; на этой же линии найти точки, ординаты которых равны следующим числам: 5) 3, 6) -5, 7) -8. Какая линия определена данным уравнением? (Изобразить ее на чертеже.)

159. Установить, какие линии определяются следующими уравнениями (построить их на чертеже): 1)x - у = 0; 2) х + у = 0; 3) x - 2 = 0; 4)x + 3 = 0; 5) y - 5 = 0; 6) у + 2 = 0; 7) х = 0; 8) у = 0; 9) х 2 - хy = 0; 10) ху + у 2 = 0; 11) х 2 - у 2 = 0; 12) ху = 0; 13) у 2 - 9 = 0; 14) х 2 - 8x + 15 = 0; 15) у 2 + by + 4 = 0; 16) х 2 у - 7ху + 10y = 0; 17) у - |х|; 18) х - |у|; 19) y + |x| = 0; 20) x + |у| = 0; 21) у = |х - 1|; 22) y = |x + 2|; 23) х 2 + у 2 = 16; 24) (х - 2) 2 + {у- 1) 2 = 16; 25 (x + 5) 2 + (у-1) 2 = 9; 26) (x - 1) 2 + y 2 = 4; 27) x 2 + (y + 3) 2 = 1; 28) (x - 3) 2 + y 2 = 0; 29) x 2 + 2y 2 = 0; 30) 2x 2 + 3y 2 + 5 = 0; 31) (x - 2) 2 + (y + 3) 2 + 1 = 0.

160. Даны линии: l)x + y = 0; 2)х - у = 0; 3)x 2 + у 2 - 36 = 0; 4) х 2 + у 2 - 2х + у = 0; 5) х 2 + у 2 + 4х - 6у - 1 = 0. Определить, какие из них проходят через начало координат.

161. Даны линии: 1) х 2 + у 2 = 49; 2) {х - 3) 2 + (у + 4) 2 = 25; 3) (х + 6) 2 + (y - З) 2 = 25; 4) (х + 5) 2 + (y - 4) 2 = 9; 5) х 2 + у 2 - 12x + 16у - 0; 6) х 2 + у 2 - 2x + 8y + 7 = 0; 7) х 2 + у 2 - 6х + 4у + 12 = 0. Найти точки их пересечения: а) с осью Ох; б) с осью Оу.

162. Найти точки пересечения двух линий:

1) х 2 + у 2 - 8; х - у =0;

2) х 2 + у 2 - 16х + 4у + 18 = 0; х + у = 0;

3) х 2 + у 2 - 2х + 4у - 3 = 0; х 2 + у 2 = 25;

4) х 2 + у 2 - 8y + 10у + 40 = 0; х 2 + у 2 = 4.

163. В полярной системе координат даны точки M 1 (l; π/3),M 2 (2; 0).М 3 (2; π/4), М 4 (√3; π/6) и M 5 (1; 2/3π). Установить, какие из этих точек лежат на линии, определенной в полярных координатах уравнением р = 2cosΘ, и какие не лежат на ней. Какая линия определяется данным уравнением? (Изобразить ее на чертеже.)

164. На линии, определенной уравнением p = 3/cosΘ найти точки, полярные углы которых равны следующим числам: а) π/3 , б) - π/3, в) 0, г) π/6. Какая линия определена данным уравнением? (Построить ее на чертеже.)

165. На линии, определенной уравнением p = 1/sinΘ, найти точки, полярные радиусьмкоторых равны следующим числам: а) 1 6) 2, в) √2 . Какая линия определена данным уравнением? (Построить ее на чертеже.)

166. Установить, какие линии определяются в полярных координатах следующими уравнениями (построить их на чертеже): 1) р = 5; 2) Θ = π/2; 3) Θ = - π/4; 4) р cosΘ = 2; 5) p sinΘ = 1; 6.) p = 6cosΘ; 7) р = 10 sinΘ; 8) sinΘ = 1/2; 9) sinp = 1/2.

167. Построить на черТёЖе следующие спйралй Архимеда: 1) р = 20; 2) р = 50; 3) p = Θ/π; 4) р = -Θ/π.

168. Построить на чертеже следующие гиперболиче-ские спирали: 1) p = 1/Θ; 2) p = 5/Θ; 3) р = π/Θ; 4) р= - π/Θ

169. Построить на чертеже следующие логарифми-ческие спирали: 1) р = 2 Θ ; 2) p = (1/2) Θ .

170. Определить длины отрезков, на которые рассе-кает спираль Архимеда р = 3Θ луч, выходящий из полюса и наклоненный к полярной оси под углом Θ = π/6. Сделать чертеж.

171. На спирали Архимеда р = 5/πΘ взята точка С, полярный радиус которой равен 47. Определить, на сколько частей эта спираль рассекает полярный радиус точки С. Сделать чертеж.

172. На гиперболической спирали P = 6/Θ найти точку Р, полярный радиус которой равен 12. Сделать чертеж.

173. На логарифмической спирали р = 3 Θ найти точку P, полярный радиус которой равен 81. Сделать чертеж.

1. Какое утверждение называется следствием? Докажи­те, что прямая, пересекающая одну из двух парал­лельных прямых, пересекает и другую.2.Докажите, что ес

ли две прямые параллельны третьей прямой, то они параллельны.3. Какая теорема называется обратной данной теореме?Приведите примеры теорем, обратных данным.4.Докажите, что при пересечении двух параллельных прямых секущей накрест лежащие углы равны.5.Докажите, что если прямая перпендикулярна к од­ной из двух параллельных прямых, то она перпенди­кулярна и к другой.6.Докажите, что при пересечении двух параллельных прямых секущей: а) соответственные углы равны; б) сумма односторонних углов равна 180°.

Помогите Пожалуйста с вопросами по геометрии(9 класс)! 2)Что значит разложить вектор по двум

данным векторам. 9)Что такое радиус-вектора точки?Докажите, что координаты точки равны соответствующим координатам векторов. 10)Выведите формулы для вычисления координат вектора по координатам его начала и конца. 11)Выведите формулы для вычисления координат вектора по координатам его концов. 12) Выведите формулу для вычисления длины вектора по его координатам. 13)Выведите формулу для вычисления расстояния между двумя точками по их координатам. 15)Какое уравнение называется уравнением данной линии?Приведите пример. 16)Выведите уравнение окружности данного радиуса с центром в данной точке.

1)Сформулируйте и докажите лемму о коллинеарных векторах.


3)Сформулируйте и докажите теорему о разложении вектора по двум неколлинеарным векторам.
4)Объясните, как вводится прямоугольная системы координат.
5)Что такое координатные векторы?
6)Сформулируйте и докажите утверждение о разложении произвольного вектора по координатным векторам.
7)Что такое координаты вектора?
8)Сформулируйте и докажите правила нахождения координат суммы и разности векторов, а также произведения вектора на число по заданным координатам векторов.
10)Выведите формулы для вычисления координат вектора по координатам его начала и конца.
11)Выведите формулы для вычисления координат вектора по координатам его концов.
12) Выведите формулу для вычисления длины вектора по его координатам.
13)Выведите формулу для вычисления расстояния между двумя точками по их координатам.
14)Приведите пример решения геометрической задачи с применением метода координат.
16)Выведите уравнение окружности данного радиуса с центром в данной точке.
17)Напишите уравнение окружности данного радиуса с центром в начале координат.
18)Выведите уравнение данной прямой в прямоугольной системе координат.
19)Напишите уравнение прямых, проходящих через данную точку M0 (X0: Y0) и параллельных осям координат.
20)Напишите уравнение осей координат.
21)Приведите примеры использования уравнений окружности и прямой при решении геометрических задач.

Пожалуйста очень надо! Желательно с рисунками(где надо)!

ГЕОМЕТРИЯ 9 КЛАСС.

1)Сформулируйте и докажите лемму о коллинеарных векторах.
2)Что значит разложить вектор по двум данным векторам.
3)Сформулируйте и докажите теорему о разложении вектора по двум неколлинеарным векторам.
4)Объясните, как вводится прямоугольная системы координат.
5)Что такое координатные векторы?
6)Сформулируйте и докажите утверждение о разложении произвольного вектора по координатным векторам.
7)Что такое координаты вектора?
8)Сформулируйте и докажите правила нахождения координат суммы и разности векторов, а также произведения вектора на число по заданным координатам векторов.
9)Что такое радиус-вектора точки? Докажите, что координаты точки равны соответствующим координатам векторов.
14)Приведите пример решения геометрической задачи с применением метода координат.
15)Какое уравнение называется уравнением данной линии? Приведите пример.
17)Напишите уравнение окружности данного радиуса с центром в начале координат.
18)Выведите уравнение данной прямой в прямоугольной системе координат.
19)Напишите уравнение прямых, проходящих через данную точку M0 (X0: Y0) и параллельных осям координат.
20)Напишите уравнение осей координат.
21)Приведите примеры использования уравнений окружности и прямой при решении геометрических задач.