Год появления электричества. История открытие электричества. Кто открыл электричество

Год появления электричества. История открытие электричества. Кто открыл электричество


ВВЕДЕНИЕ

Начнем наш рассказ словами самого Теслы, написавшего незадолго до смерти замечательный очерк истории электротехники "Сказку об электричестве": "Кто действительно хочет помять все величие нашего времени, тот должен познакомиться с историей науки об электричестве”.

Впервые явления, ныне называемые электрическими, были замечены в древнем Китае, Индии, а позднее в древней Греции. Сохранившиеся предания гласят, что древнегреческому философу Фалесу Милетскому (640-550 гг. до н. э.) было уже известно свойство янтаря, натертого мехом или шерстью, притягивать обрывки бумаги, пушинки и другие легкие тела. От греческого названия янтаря - "электрон" - явление это позднее получило наименование электризации.

На протяжении многих столетий, электрические явления считались проявлениями божественной силы, пока в 17в. ученые не подошли вплотную к изучению электричества. Кулон, Гильберт, Отто фон Герике, Мушенбрек, Франклин, Эрстед, Араго, Ломоносов, Луиджи Гальвани, Алессандро Вольта - вот далеко не полный список ученых занимавшихся проблемами электричества. Особо следует сказать о деятельности замечательного ученого Андре Мари Ампера, положившего начало изучению динамических действий электрического тока и установившему целый ряд законов электродинамики.

Открытия Эрстеда, Араго, Ампера заинтересовали гениального английского физика Майкла Фарадея и побудили его заняться всем кругом вопросов о превращении электрической и магнитной энергии в механическую. Другой английский физик Джеймс Клерк (Кларк) Ма́ксвелл 1873 году издал капитальный двухтомный труд «Трактат об электричестве и магнетизме», который объединил понятия электричество, магнетизм и электромагнитное поле. С этого момента началась эра активного использования электрической энергии в повседневной жизни.

1. ЭЛЕКТРИЧЕСТВО

Электри́чество — понятие, выражающее свойства и явления, обусловленные структурой физических тел и процессов, сущностью которой является движение и взаимодействие микроскопических заряженных частиц вещества (электронов, ионов, молекул, их комплексов и т. п.) .

Гильберт впервые обнаружил, что свойства электризации присущи не только янтарю, но и алмазу, сере, смоле. Он заметил также, что некоторые тела, например металлы, камни, кость, не электризуются, и разделил все тела, встречающиеся в природе, электризуемые и неэлектризуемые. Обратив особое внимание на первые, он производил опыты по изучению их свойств.

В 1650 году известный немецкий ученый, бургомистр города Магдебурга, изобретатель воздушного насоса Отто фон Герике построил специальную "электрическую машину", представлявшую шар из серы величиной с детскую голову, насаженный на ось.

Рисунок 1 - Электрическая машина фон Герике, усовершенствованная Ван де Графом

Если при вращении шара его натирали ладонями рук, он вскоре приобретал свойство притягивать и отталкивать легкие тела. На протяжении нескольких столетий машину Герике значительно усовершенствовали англичанин Хоксби, немецкие ученые Бозе, Винклер и другие. Опыты с этими машинами привели к ряду важных открытий:

· в 1707 году французский физик дю Фей обнаружил различие между электричеством, получаемым от трения стеклянного шара и получаемым от трения крута из древесной смолы;

· в 1729 году англичане Грей и Уилер обнаружили способность некоторых тел проводить электричество и впервые указали на то, что все тела можно разделить на проводники и непроводники электричества.

Но значительно более важное открытие было описано в 1729 году Мушенбреком - профессором математики и философии в городе Лейдене. Он обнаружил, что стеклянная банка, оклеенная с обеих сторон оловянной фольгой (листочками станиоля), способна накапливать электричество. Заряженное до определенного потенциала (понятие о котором появилось значительно позднее), это устройство могло быть разряжено со значительным эффектом - большой искрой, производившей сильный треск, подобный разряду молнии, и оказывавшей физиологические действия при прикосновении рук к обкладкам банки. От названия города, где производились опыты, прибор, созданный Мушенбреком, был назван лейденской банкой.

Рисунок 2 - Лейденская банка. Параллельное соединение четырёх банок

Исследования ее свойств производились в различных странах и вызвали появление множества теорий, пытавшихся объяснить обнаруженное явление конденсации заряда. Одна из теорий этого явления была дана, выдающимся американским ученым и общественным деятелем Бенджамином Франклином, который указал на существование положительного и отрицательного электричества. С точки зрения этой теории Франклин объяснил процесс заряда и разряда лейденской банки и доказал, что ее обкладки можно произвольно электризовать разными по знаку электрическими зарядами.

Франклин, как и русские ученые М. В. Ломоносов и Г. Рихман, уделил немало внимания изучению атмосферного электричества, грозового разряда (молнии). Как известно, Рихман погиб, производя опыт по изучению молнии. В 1752 году Бенджамином Франклином изобретен молниеотвод. Молниеотвод (в быту также употребляется более благозвучное «громоотвод») — устройство, устанавливаемое на зданиях и сооружениях и служащее для защиты от удара молнии. Состоит из трёх связанных между собой частей:

В 1785 году Ш. Кулоном открыт основной закон электростатики. На основании многочисленных опытов Кулон установил следующий закон:

Сила взаимодействия неподвижных зарядов, находящихся в вакууме, прямо пропорциональна произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними- , :

В 1799 год Создан первый источник электрического тока — гальванический элемент и батарея элементов. Гальванический элемент (химический источник тока) - устройство, которое позволяет превращать энергию химической реакции в электрическую работу. По принципу работы различают первичные (разовые), вторичные (аккумуляторы) и топливные элементы. Гальванический элемент состоит из ионпроводящего электролита и двух разнородных электродов (полуэлементов), процессы окисления и восстановления в гальваническом элементе пространственно разделены. Положительный полюс гальванического элемента называется катодом , отрицательный - анодом . Электроны выходят из элемента через анод и движутся во внешней цепи к катоду .

Работы русских академиков Эпинуса, Крафта и других выявили целый ряд весьма важных свойств электрического заряда, но все они изучали электричество в состоянии неподвижном или мгновенный раз ряд его, то есть свойства статического электричества. Движение его проявлялось лишь в форме разряда. Об электрическом токе, то есть о непрерывном движении электричества, еще ничего не было известно.

Одним из первых глубоко исследовал свойства электрического тока в 1801 -1802 годах петербургский академик В. В. Петров. Работы этого выдающегося ученого, построившего самую крупную в мире в те годы батарею из 4200 медных и цинковых кружков, установили возможность практического использования электрического тока для нагрева проводников. Кроме того, Петров наблюдал явление электрического разряда между концами слегка разведенных углей как в воздухе, так и в других газах и вакууме, получившее название электрической дуги. В. В. Петров не только описал открытое им явление, но и указал на возможность его использования для освещения или плавки металлов и тем самым впервые высказал мысль о практическом применении электрического тока. С этого момента и должно начинать историю электротехники как самостоятельной отрасли техники.

Опыты с электрическим током привлекали внимание многих ученых разных стран. В 1802 году итальянский ученый Романьози обнаружил отклонение магнитной стрелки под влиянием электрического тока, протекавшего по расположенному вблизи проводнику. В конце 1819 года это явление было вновь наблюдаемо датским физиком Эрстедом, который в марте 1820 года опубликовал на латинском языке брошюру под заглавием "Опыты, касающиеся действия электрического конфликта на магнитную стрелку". В этом сочинении "электрическим конфликтом" был назван электрический ток.

Едва лишь Араго продемонстрировал на заседании Парижской Академии наук опыт Эрстеда, как Ампер, повторив его, 18 сентября 1820 года, ровно через неделю, представил в академию сообщение о своих исследованиях. На следующем заседании, 25 сентября, Ампер докончил чтение доклада, в котором он изложил законы взаимодействия двух токов, протекающих по параллельно расположенным проводникам. С этого момента академия еженедельно слушала новые сообщения Ампера о его опытах, завершивших открытие и формулирование основных законов электродинамики.

Одной из важнейших заслуг Ампера было то, что он впервые объединил два разобщенных ранее явления - электричество и магнетизм - одной теорией электромагнетизма и предложил рассматривать их как результат единого процесса природы. Эта теория, встреченная современниками Ампера с большим недоверием, была весьма прогрессивной и сыграла огромную роль в правильном понимании открытых позднее явлений.

В 1827 году немецкий ученый Георг Ом открыл один из фундаментальных законов электричества, устанавливающий основные зависимости между силой тока, напряжением и сопротивлением цепи, по которой протекает электрический ток, , ,

В 1847 году Кирхгоф сформулировал законы развертывания токов в сложных цепях , , , :

· Первый закон Кирхгофа

Применяется к узлам и формулируется следующим образом: алгебраическая сумма токов в узле равна нулю. Знаки определяются в зависимости от того, направлен ток к узлу или от него (в любом случае произвольно).

· Второй закон Кирхгофа

Применяется к контурам: в любом контуре сумма напряжений на всех элементах и участках цепи, входящих в этот контур, равна нулю. Направление обхода каждого контура можно выбирать произвольно. Знаки определяются в зависимости от совпадения напряжений с направлением обхода.

Вторая формулировка: в любом замкнутом контуре алгебраическая сумма напряжений на всех участках с сопротивлениями, входящих в этот контур, равно алгебраической сумме ЭДС.

· Обобщение законов Кирхгофа

Пусть У - количество узлов цепи, В - количество ветвей, К - число контуров .

Рисунок 3 - Линейная разветвленная электрическая цепь (У=3, В=5, K=6)

2. МАГНЕТИЗМ (МАГНИТЫ)

Магнетизм - это форма взаимодействия движущихся электрических зарядов, осуществляемая на расстоянии посредством магнитного поля .

Магнитное поле- это особый вид материи, специфической особенностью которой является действие на движущийся электрический заряд, проводники с током, тела, обладающие магнитным моментом, с силой, зависящей от вектора скорости заряда, направления силы тока в проводнике и от направления магнитного момента тела .

Постоянный магнит - изделие из магнитотвердого материала, автономный источник постоянного магнитного поля.
Магниты [греч. magnetis, от Magnetis Lithos, — камень из Магнесии (древний город в Малой Азии)] бывают естественные и искусственные. Естественным магнитом является кусок железной руды, обладающий способностью притягивать к себе находящиеся вблизи небольшие железные предметы.

Гигантскими естественными магнитами являются Земля и другие планеты (Магнитосфера) так как они обладают магнитным полем. Искусственные магниты представляют собой предметы и изделия, получившие магнитные свойства в результате контакта с естественным магнитом или намагниченные в магнитном поле. Постоянный магнит является искусственным магнитом.

В наиболее простых случаях постоянный магнит представляет собой тело (в виде подковы, полосы, шайбы, стержня и т. д.), прошедшее соответствующую термическую обработку и предварительно намагниченное до насыщения.

Рисунок 4 - Виды магнитов: а) подковообразный; б) полосовой; в) кольцевой

Постоянный магнит обычно входит как составная часть в магнитную систему, предназначенную для формирования магнитного поля. Напряженность магнитного поля, формируемого постоянным магнитом, может быть как постоянная, так и регулируемая.
Различные части постоянного магнита притягивают железные предметы по-разному. Концы магнита, где притяжение максимальное, называются полюсами магнита, а средняя часть, где притяжение практически отсутствует, называется нейтральной зоной магнита. Искусственные магниты в виде полосы или подковы всегда имеют два полюса на концах полосы и нейтральную зону между ними. Можно намагнитить кусок стали таким образом, что он будет иметь 4, 6 и более полюсов, разделенных нейтральными зонами, при этом число полюсов всегда остается четным. Невозможно получить магнит с одним полюсом. Соотношение между размерами полюсных областей и нейтральной зоны магнита зависит от его формы.

Уединенный магнит в виде длинного и тонкого стержня называют магнитной стрелкой. Конец укрепленной на острие или подвешенной магнитной стрелки — простейший компас, указывает географический север Земли, и называется северным полюсом (N) магнита, противоположный полюс магнита, указывает на юг, и называется южным полюсом (S).
Области применения постоянных магнитов весьма разнообразны. Их применяют в электродвигателях, в автоматике, робототехнике, для магнитных муфт магнитных подшипников, в часовой промышленности, в бытовой технике, как автономные источники постоянного магнитного поля в электротехнике и радиотехнике.

Магнитные цепи, включающие постоянные магниты, должны быть разомкнутыми, т. е. иметь воздушный зазор. Если постоянный магнит изготовлен в виде кольцевого сердечника, то он практически не отдает энергию во внешнее пространство, так как почти все магнитные силовые линии замыкаются внутри него. В этом случае магнитное поле вне сердечника практически отсутствует. Чтобы использовать магнитную энергию постоянных магнитов, нужно в замкнутом магнитопроводе создать воздушный зазор определенного размера-.

Когда постоянный магнит служит для создания магнитного потока в воздушном зазоре, например между полюсами подковообразного магнита, воздушный зазор уменьшает индукцию (и намагниченность) постоянного магнита .

3. ЭЛЕКТРОМАГНЕТИЗМ

Электромагнитное взаимодействие— одно из четырёх фундаментальных взаимодействий. Электромагнитное взаимодействие существует между частицами, обладающими электрическим зарядом. С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля.

С точки зрения квантовой теории поля электромагнитное взаимодействие переносится безмассовым бозоном — фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля). Сам фотон электрическим зарядом не обладает, а значит не может непосредственно взаимодействовать с другими фотонами.

Из фундаментальных частиц в электромагнитном взаимодействии участвуют также имеющие электрический заряд частицы: кварки, электрон, мюон и тау-частица (из фермионов), а также заряженые калибровочные бозоны.

Электромагнитное взаимодействие отличается от слабого и сильноговзаимодействия своим дальнодействующим характером — сила взаимодействия между двумя зарядами спадает только как вторая степень расстояния (см.: закон Кулона). По такому же закону спадает с расстоянием гравитационное взаимодействие.

Электромагнитное взаимодействие заряженных частиц намного сильнее гравитационного, и единственная причина, по которой электромагнитное взаимодействие не проявляется с большой силой на космических масштабах — электрическая нейтральность материи, то есть наличие в каждой области Вселенной с высокой степенью точности равных количеств положительных и отрицательных зарядов .

Электромагнитное поле - это особая форма материи, посредством которой осуществляется взаимодействие между заряженными частицами. Представляет собой взаимосвязан­ные переменные электрическое поле и магнитное поле. Взаимная связь электрического Е и магнитного Н полей заключается в том, что всякое изменение одного из них приводит к появ­лению другого: переменное электрическое поле, порождаемое уско­ренно движущимися зарядами (источником), возбуждает в смежных областях пространства переменное магнитное поле, которое, в свою очередь, возбуждает в прилегающих к нему областях пространства переменное электрическое поле, и т. д. Таким образом, электромагнитное поле распространяется от точки к точке простран­ства в виде электромагнитных волн, бегущих от источника. Благодаря конечности скорости распространения электромагнитное поле может существовать автономно от породившего его источ­ника и не исчезает с устранением источника (например, радио­волны не исчезают с прекращением тока в излучившей их антенне).

Электромагнитное поле в вакууме описывается напряженностью электри­ческого поля Е и магнитной индукцией В. Электромагнитное поле в среде характеризуется дополнительно двумя вспомогательными величина­ми: напряженностью магнитного поля Н и электрической индукцией D. Связь компонентов электромагнитного поля с зарядами и то­ками описывается уравнениями Максвелла.

Электромагнитные волны представляют собой электромагнитные колебания, распространяющиеся в пространстве с конеч­ной скоростью, зависящей от свойств среды (рисунок 5).

Рисунок 5 - Электромагнитные волны

Существо­вание электромагнитных волн предсказано английским физиком М. Фарадеем в 1832 г. Другой английский ученый, Дж. Максвелл, в 1865 г. теоретически показал, что электромагнитные колебания не остаются локализован­ными в пространстве, а распространяются во все стороны от источника. Теория Максвелла позволила единым образом подойти к описанию радио­волн, оптического излучения, рентгеновского излучения, гамма-излучения. Оказалось, что все эти виды излуче­ния - электромагнитные волны с различной длиной волны λ, т. е. родственны по своей природе. Каждое из них имеет своё определён­ное место в единой шкале электромагнитных волн (рисунок 6).

Рисунок 6 - Шкала электромагнитных волн

Распространяясь в средах, электромагнитные волны, как и всякие другие волны, могут испытывать преломление и отражение на границе раздела сред, дисперсию, поглощение, интерференцию; при распространении в неоднородных средах наблюдаются дифракция волн, рассеяние волн и другие явления.

Электромагнитные волны различных диапазонов длин волн характеризуются различными способами возбуждения и регистрации, по-разному взаимо­действуют с веществом. Процессы излучения и поглощения электромагнитных волн от самых длинных до ИК излучения достаточно полно описываются соотношениями классической электро­динамики.

В диапазонах более коротких длин волн, в особен­ности в диапазонах рентгеновских и γ-лучей, доминируют процессы, имеющие квантовую природу, и могут быть описаны только в рамках квантовой электроди­намики на основе представлении о дискретности этих процессов.

Электромагнитные волны широко используются в радиосвязи, радиолокации, телевидении, медицине, биологии, физике, астрономии и др. областях науки и техники .

Открытия Эрстеда, Араго, Ампера заинтересовали гениального английского физика Майкла Фарадея и побудили его заняться всем кругом вопросов о превращении электрической и магнитной энергии в механическую. В 1821 году он нашел еще одно решение поставленной задачи превращения электрической и магнитной энергии в механическую и продемонстрировал свой прибор, в котором он получал явление непрерывного электромагнитного вращения. В тот же день Фарадей записал в свой рабочий дневник обратную задачу: "Превратить магнетизм в электричество". Более десяти лет потребовалось, чтобы решить ее и найти способ получения электрической энергии из магнитной и механической. Лишь в конце 1831 года Фарадей сообщил об открытии им явления, названного затем электромагнитной индукцией и составляющего основу всей современной электроэнергетики-.

4. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ

Исследование Фарадея и работы русского академика Э. X. Ленца, сформулировавшего закон, по которому можно было определить направление электрического тока, возникающего в результате электромагнитной индукции, дали возможность создать первые электромагнитные генераторы и электродвигатели.

Вначале электрогенераторы и электродвигатели развивались независимо друг от друга, как две совершенно разные машины. Первый изобретатель электрического генератора, основанного на принципе электромагнитной индукции, пожелал остаться неизвестным. Произошло это так. Вскоре после опубликования доклада Фарадея в Королевском обществе, в котором было изложено открытие электромагнитной индукции, ученый нашел в своем почтовом ящике письмо, подписанное инициалами Р. М. Оно содержало описание первого в мире синхронного генератора и приложенный к нему чертеж. Фарадей, внимательно разобравшись в этом проекте, направил письмо Р. М. и чертеж в тот же журнал, в котором был в свое время помещен его доклад, надеясь, что неизвестный изобретатель, следя за журналом, увидит опубликованным не только свой проект, но и сопровождающее его письмо Фарадея, исключительно высоко оценивающее изобретение Р. М- , , .

Действительно, спустя почти полгода Р. М. прислал в редакцию журнала дополнительные разъяснения и описание предложенной им конструкции электрогенератора, но и на этот раз пожелал остаться неизвестным. Имя истинного создателя первого электромагнитного генератора так и осталось скрытым под инициалами, и человечество до сих пор, несмотря на тщательные розыски историков электротехники, остается в неведении, кому же оно обязано одним из важнейших изобретений. Машина Р. М. не имела устройства для выпрямления тока и была первым генератором переменного тока. Но этот ток, казалось, не мог быть использован для дугового освещения, электролиза, телеграфа, уже прочно вошедших в жизнь. Необходимо было, по мысли конструкторов того времени, создать машину, в которой можно было бы получать ток постоянным по направлению и величине.

Почти одновременно с Р. М. конструированием генераторов занимались братья Пикси и профессор физики Лондонского университета и член Королевского общества В. Риччи. Созданные ими машины имели специальное устройство для выпрямления переменного тока в постоянный - так называемый коллектор. Дальнейшее развитие конструкций генератора постоянного тока шло необычайно быстрыми темпами. Менее чем за сорок лет динамо-машина приобрела почти полностью форму современного генератора постоянного тока. Правда, обмотка этих динамо-машин была распределена по окружности неравномерно, что ухудшало работу таких генераторов - напряжение в них то возрастало, то снижалось, вызывая неприятные толчки.

В 1870 году Зенобей Грамм предложил особую, так называемую кольцевую обмотку якоря динамо-машины. Равномерное распределение обмотки якоря давало возможность получать совершенно равномерное напряжение в генераторе и такое же вращение двигателя, что значительно улучшило свойства электрических машин. По существу, изобретение это повторяло то, что было уже создано и описано в 1860 году итальянским физиком Пачинноти, но прошло незамеченным и осталось неизвестным 3. Грамму. Машины с кольцевым якорем получили особенно большое распространение после того, как на Венской всемирной выставке в 1873 году была обнаружена обратимость электрических машин Грамма: одна и та же машина при вращении якоря давала электрический ток, при протекании тока через якорь вращалась и могла быть использована в качестве электродвигателя.

С этого времени начинается быстрый рост применения электродвигателей и все расширяющееся потребление электроэнергии, чему немало способствовало изобретение П. Н. Яблочковым способа освещения с помощью так называемой "свечи Яблочкова" - дуговой электролампы с параллельным расположением углей.

Простота и удобство "свечей Яблочкова", заменивших дорогие, сложные и громоздкие дуговые фонари с регуляторами для непрерывного сближения сгорающих углей, вызвали их повсеместное распространение, и вскоре "свет Яблочкова", "русский" или "северный" свет, освещал бульвары Парижа, набережные Темзы, проспекты столицы России и даже древние города Камбоджи. Это было подлинным триумфом русского- изобретателя.

Но для питания этих свечей электроэнергией потребовалось создание особых электрогенераторов, дающих не постоянный, а переменный ток, то есть ток, хотя бы и не часто, но непрерывно меняющий свою величину и направление. Это было необходимо потому, что угли, соединенные с разными полюсами генератора постоянного тока, сгорали неравномерно - анод, подключенный к положительному, сгорал вдвое быстрее катода. Переменный ток попеременно превращал анод в катод и тем самым обеспечивал равномерное сгорание углей. Специально для питания "свечей Яблочкова" и был создан самим П. Н. Яблочковым, а затем усовершенствован французскими инженерами Лонтеном и Граммом генератор переменного тока. Однако о двигателе переменного тока еще не возникало и мысли.

Вместе с тем для раздельного питания отдельных свечей от генератора переменного тока изобретателем был создан особый прибор - индукционная катушка (трансформатор), позволявший изменять напряжение тока в любом ответвлении цепи в соответствии с числом подключенных свечей. Вскоре растущие потребности в электроэнергии и возможности получения ее в больших количествах вступили в противоречие с ограниченными возможностями передачи ее на расстояние. Применявшееся в то время низкое напряжение (100-120 вольт) постоянного тока и передача его по проводам сравнительно небольшого сечения вызывали огромные потери в линиях передачи. С конца 70-х годов прошлого столетия основной проблемой, от успешного решения которой зависело все будущее электротехники, стала проблема передачи электроэнергии на значительные расстояния без больших потерь.

Первое теоретическое обоснование возможности передачи любых количеств электроэнергии на любые расстояния по проводам сравнительно небольшого диаметра без значительных потерь путем повышения напряжения было дано профессором физики Петербургского лесного института Д. А. Лачиновым в июле 1880 года. Вслед за этим французский физик и электротехник Марсель Депре в 1882 году на Мюнхенской электротехнической выставке осуществил передачу электроэнергии в несколько лошадиных сил на расстояние 57 километров с коэффициентом полезного действия в 38 процентов.

Позднее Депре произвел еще ряд опытов, осуществив передачу электроэнергии на расстояние в сотню километров и доведя мощность передачи до нескольких сот киловатт. Дальнейшее увеличение расстояния требовало значительного повышения напряжения. Депре довел его до 6 тысяч вольт и убедился, что изоляция пластин в коллекторе генераторов и электродвигателей постоянного тока не позволяет достигнуть более высокого напряжения.

Несмотря на все эти трудности, в начале 80-х годов развитие промышленности и концентрация производства все более и более настоятельно требовали создания нового двигателя, более совершенного, чем широко распространенная паровая машина. Уже было ясно, что электростанции выгодно строить вблизи месторождений угля или на реках с большим падением воды, в то время как фабрики возводить поближе к источникам сырья. Это зачастую требовало передачи огромных количеств электроэнергии к объектам ее потребления на значительные расстояния. Такая передача была бы целесообразна лишь при применении напряжения в десятки тысяч вольт. Но получить такое напряжение в генераторах постоянного тока было невозможно. На помощь пришли переменный ток и трансформатор: пользуясь ими, стали производить переменный ток низкого напряжения, затем повышать его до любой требуемой величины, передавать на расстояние высоким напряжением, а на месте потребления снова снижать до требуемого и использовать в токоприемниках.

Еще не существовало электродвигателей переменного тока. Ведь уже в начале 80-х годов электроэнергия потреблялась главным образом для силовых нужд. Электродвигатели постоянного тока для привода самых различных машин применялись все чаще и чаще. Создать электродвигатель, который мог бы работать на переменном токе, стало основной задачей электротехники. В поисках новых путей всегда необходимо оглянуться назад. Не было ли в истории электротехники чего-либо такого, что могло бы подсказать путь к созданию электродвигателя переменного тока? Поиски в прошлом увенчались успехом. Вспомнили: еще в 1824 году Араго демонстрировал опыт, положивший начало множеству плодотворных исследований. Речь идет о демонстрации "магнетизма вращения". Медный (не магнитный) диск увлекался вращающимся магнитом.

Возникла идея, нельзя ли, заменив диск витками обмотки, а вращающийся магнит вращающимся магнитным полем, создать электродвигатель переменного тока? Наверное, можно, но как получить вращение магнитного поля?

В эти годы было предложено много различных способов применения переменного тока. Добросовестный историк электротехники должен будет назвать имена различных физиков и инженеров, пытавшихся в середине 80-х годов создать электродвигатели переменного тока. Он не забудет напомнить об опытах Бейли (1879 г.), Марселя Депре (1883 г), Бредли (1887 г.), о работах Венстрома, Хазельвандера и многих других. Предложения, несомненно, были очень интересны, но ни одно из них не могло удовлетворить промышленность: электродвигатели их были либо громоздки и неэкономичны, либо сложны и ненадежны. Не был еще найден сам принцип постройки простых экономичных и надежных электродвигателей переменного тока.

Именно в этот период и начал, как мы уже знаем, поиски решения этой задачи Никола Тесла. Он шел своим путем, путем размышлений над сущностью опыта Араго, и предложил коренное решение возникшей проблемы, сразу же оказавшееся приемлемым для практических целей. Еще в Будапеште весной 1882 года Тесла ясно представил себе, что если каким-либо образом осуществить питание обмоток магнитных полюсов электродвигателя двумя различными переменными токами, отличающимися друг от друга лишь сдвигом по фазе, то чередование этих токов вызовет переменное образование северного и южного полюсов или вращение магнитного поля. Вращающееся магнитное поле должно увлечь и обмотку ротора машины.

Построив специальный источник двухфазного тока (двухфазный генератор) и такой же двухфазный электродвигатель, Тесла осуществил свою идею. И хотя конструктивно его машины были весьма несовершенны, принцип вращающегося магнитного поля, примененный в первых же моделях Теслы, оказался правильным.

Рассмотрев все возможные случаи сдвига фаз, Тесла остановился на сдвиге в 90°, то есть на двухфазном токе. Это было вполне логично - прежде чем создавать электродвигатели с большим числом фаз, следовало начать с тока двухфазного. Но можно было бы применить и другой сдвиг фаз: на 120° (трехфазный ток). Не проанализировав теоретически и не осмыслив все возможные случаи, даже не сравнив их между собой (вот в чем большая ошибка Теслы), он все свое внимание сосредоточил на двухфазном токе, создав двухфазные генераторы и электродвигатели и лишь мельком упомянул в своих патентных заявках о многофазных токах и возможности их применения.

Но Тесла не был единственным ученым, вспомнившим об опыте Араго и нашедшим решение важной проблемы. В те же годы исследованиями в области переменных токов занимался итальянский физик Галилео Феррарис, представитель Италии на многих международных конгрессах электриков (1881 и 1882 годы в Париже, 1883 год в Вене и другие). Подготавливая лекции по оптике, он пришел к мысли о возможности постановки опыта, демонстрирующего свойства световых волн. Для этого Феррарис укрепил на тонкой нити медный цилиндр, на который действовали два магнитных поля, сдвинутых под углом в 90°. При включении тока в катушки, попеременно создающие магнитные поля то в одной, то в другой из них, цилиндр под действием этих полей поворачивался и закручивал нить, в результате чего поднимался на некоторую величину вверх. Устройство это прекрасно моделировало явление, известное под названием поляризации света.

Феррарис и не предполагал использовать свою модель для каких-либо электротехнических целей. Это был всего лишь лекционный прибор, остроумие которого заключалось в умелом применении электродинамического явления для демонстраций в области оптики.

Феррарис не ограничился этой моделью. Во второй, более совершенной модели ему удалось достигнуть вращения цилиндра со скоростью до 900 оборотов в минуту. Но за определенными пределами, как бы ни увеличивалась в цепи сила тока, создававшего магнитные поля (другими словами, как бы ни увеличивалась затрачиваемая мощность), достигнуть увеличения числа оборотов не удавалось. Подсчеты показали, что мощность второй модели не превышала 3 ватт.

Несомненно, Феррарис, будучи не только оптиком, но и электриком, не мог не понимать значения произведенных им опытов. Однако ему, по собственному его признанию, и в голову не приходило применить этот принцип к созданию электродвигателя переменного тока. Самое большое, что он предполагал, это использовать его для измерения силы тока, и даже начал конструировать такой прибор.

18 марта 1888 года в Туринской Академии наук Феррарис сделал доклад "Электродинамическое вращение, произведенное с помощью переменных токов". В нем он рассказал о своих опытах и пытался доказать, что получение в таком приборе коэффициента полезного действия свыше 50 процентов невозможно. Феррарис был искренне убежден, что, доказав нецелесообразность использования переменных магнитных полей для практических целей, он оказывает науке большую услугу. Доклад Феррариса опередил сообщение Николы Теслы в Американском институте электроинженеров. Но заявка, поданная для получения патента еще в октябре 1887 года, свидетельствует о несомненном приоритете Теслы перед Феррарисом. Что же касается публикации, то статья Феррариса, доступная для чтения всем электрикам мира, была опубликована лишь в июне 1888 года, то есть после широко известного доклада Теслы.

На утверждение Феррариса, что работы по изучению вращающегося магнитного поля начаты им в 1885 году, Тесла имел все основания возразить, что он занимался этой проблемой еще в Граце, решение ее нашел в 1882 году, а в 1884 году в Страсбурге демонстрировал действующую модель своего двигателя Но, конечно, дело не только в приоритете. Несомненно, оба ученых сделали одно и то же открытие независимо друг от друга: Феррарис не мог знать о патентной заявке Теслы, так же как и последний не мог знать о работах итальянского физика.

Гораздо важнее то, что Г. Феррарис, открыв явление вращающегося магнитного поля и построив свою модель мощностью в 3 ватта, и не думал об их практическом использовании. Более того: если бы ошибочный вывод Феррариса о нецелесообразности применения переменных многофазных токов был принят, то человечество еще несколько лет было бы направлено по ложному пути и лишено возможности широкого использования электроэнергии в самых различных отраслях производства и быта. Заслуга Николы Теслы и заключается в том, что, несмотря на множество препятствий и скептическое отношение к переменному току, он практически доказал целесообразность применения многофазного тока. Созданные им первые двигатели двухфазного тока, хотя и имели ряд недостатков, привлекли внимание электротехников всего мира и возбудили интерес к его предложениям.

Однако статья Галилео Феррариса в журнале "Атти ди Турино" сыграла огромную роль в развитии электротехники. Ее перепечатал один крупный английский журнал, и номер с этой статьей попал в руки другого ученого, теперь заслуженно признанного создателем современной электротехники трехфазного тока.

5. ТРАНСФОРМАТОР ТЕСЛА

Известны различными по конструкции трансформаторы Тесла от простейших с разрядником до современных схем с задающими высокочастотными генераторами для его первичной обмотки, выполненных как на полупроводниковых так и на ламповых схемах.

Схема простейшего трансформатора Тесла:

В элементарной форме трансформатор Теслы состоит из двух катушек, первичной и вторичной, и обвязки, состоящей из разрядника (прерывателя, часто встречается английский вариант Spark Gap), конденсатора, тороида (используется не всегда) и терминала (на схеме показан как “выход”).

Рисунок 7 - Простейшая схема трансформатора Тесла

Рисунок 8 - Трансформатор Тесла в действии

Первичная катушка построена из 5—30 (для VTTC — катушки Теслы на лампе — число витков может достигать 60) витков провода большого диаметра или медной трубки, а вторичная из многих витков провода меньшего диаметра. Первичная катушка может быть плоской (горизонтальной), конической или цилиндрической (вертикальной). В отличие от многих других трансформаторов, здесь нет никакого ферромагнитного сердечника. Таким образом, взаимоиндукция между двумя катушками гораздо меньше, чем у обычных трансформаторов с ферромагнитным сердечником. У данного трансформатора также практически отсутствует магнитный гистерезис, явления задержки изменения магнитной индукции относительно изменения тока и другие недостатки, вносимые присутствием в поле трансформатора ферромагнетика.

Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент — разрядник (искровой промежуток). Разрядник, в простейшем случае, обыкновенный газовый; выполненный обычно из массивных электродов (иногда с радиаторами), что сделано для большей износостойкости при протекании больших токов через электрическую дугу между ними.

Вторичная катушка также образует колебательный контур, где роль конденсатора выполняет ёмкостная связь между тороидом, оконечным устройством, витками самой катушки и другими электропроводящими элементами контура с Землей. Оконечное устройство (терминал) может быть выполнено в виде диска, заточенного штыря или сферы. Терминал предназначен для получения предсказуемых искровых разрядов большой длины. Геометрия и взаимное положение частей трансформатора Теслы сильно влияет на его работоспособность, что аналогично проблематике проектирования любых высоковольтных и высокочастотных устройств .


ВЫВОД

Ставшие привычными в нашей повседневной жизни вещи, использующие электроэнергию, являются плодами научной и технической мысли многих поколений ученых. Часто понимание практической ценности и значимости открытых явлений приходило с запозданием или приходило со следующим поколением ученых.

Однако, нельзя не отметить, что именно развитие электротехники, способствовало ускорению технического прогресса. Создание и развитие электрических машин постоянного и переменного тока позволило проектировать гибкие системы управления, что не могло быть реализуемо на двигателях, использующих энергию газа и жидкости. Развитие микропроцессорной техники позволило создавать мощные компьютеры, участвующие в экспериментах физиков-теоретиков, открывающих тайны мироздания (БАК в Церне).

По моему глубокому убеждению, в области электротехники осталось еще не мало загадок, тайн и великих открытий.

Назад Обновлено: 17.10.2019 20:49

You have no rights to post comments

Уже не знают сторонники альтернативных версий истории, к чему придраться:о)

На сей раз таким поводом послужили снимки завода Берда

Я полагаю, что такой незнающий не один, потому привожу часть статьи отсюда:

касающуюся только XIX века

А.Н. Лодыгин получил патент на изобретение лампы накаливания с угольным стерженьком (привилегия № 1619 от 11 июля 1874 г.) и ежегодную Ломоносовскую премию Академии наук. Устройство было запатентовано также в Бельгии, Франции, Великобритании, Австро-Венгрии. Через шесть лет, в 1880 г., электрическая лампочка Лодыгина, усовершенствованная Т. Эдисоном, начала свое триумфальное шествие по планете.

Электрическая лампа накаливания Лодыгина

Русский электротехник П.Н. Яблочков на своем небольшом электротехническом предприятии построил первую дифференциальную лампу конструкции В. Н. Чиколева. Лампа Чиколева действовала с первого момента без ручной регулировки, требовала сравнительно небольшого тока и допускала последовательное включение в цепь произвольного числа ламп. Начиная с 1879 г. идея дифференциального регулятора В.Н. Чиколева получила широкое применение в прожекторостроении.

Инженер Ф.А. Пироцкий провел ряд опытов по передаче электроэнергии на расстояние сначала нескольких десятков метров, а затем и до 1 км. На основании опытов пришел к заключению о возможности передачи электроэнергии на большие расстояния

П.Н. Яблочков завершил разработку конструкции электрической свечи, начатую в 1875 г., и 23 марта 1876 г. получил французский патент № 112024, содержащий краткое описание свечи в её первоначальных формах и изображение этих форм. «Свеча Яблочкова» оказалась проще, удобнее и дешевле в эксплуатации, чем угольная лампа А.Н. Лодыгина. Под названием «русский свет» свечи Яблочкова использовались позже для уличного освещения во многих городах мира. Также Яблочков предложил первые практически применявшиеся трансформаторы переменного тока с разомкнутой магнитной системой.

Электрический фонарь Яблочкова

1879

Русские электротехники П.Н. Яблочков, А.Н. Лодыгин, В.Н. Чиколев совместно с рядом других электротехников и физиков организовали в составе Русского технического общества Особый Электротехнический отдел. Задачей отдела было содействие развитию электротехники.

В апреле 1879 г. впервые в России электрическими фонарями освещен мост – мост Александра II (ныне Литейный мост)

Один из первых электрических фонарей

в Санкт-Петербурге. При содействии Отдела на Литейном мосту введена первая в России установка наружного электрического освещения (дуговыми лампами Яблочкова в светильниках, изготовленных по проекту архитектора Кавоса), положившая начало созданию местных систем освещения дуговыми лампами некоторых общественных зданий Петербурга, Москвы и других больших городов. Электрическое освещение моста устроенное В.Н. Чиколевым, где горело 12 свечей Яблочкова вместо 112 газовых рожков, функционировало всего 227 дней.

30 января создано первое в мире специальное электротехническое общество – VI отдел Русского технического общества, призванный курировать проблемы электрификации России.

В марте открылась первая в мире электротехническая выставка в помещении Русского технического общества в Соляном городке в Санкт-Петербурге. Задачей выставки было «показать обществу современное состояние развития различных отраслей электротехники».

В июле начал издаваться один из первых электротехнических журналов в мире – журнал «Электричество». Ф.А. Пироцкий модернизирует городские двухэтажные трамваи на конной тяге, переводя их на электрическую тягу. 22 августа в 12 часов дня в Петербурге, на углу Болотной улицы и Дегтярного переулка, в первый раз в России была проверена возможность движения трамвайного вагона «электрическою силою, идущей по рельсам, по которым катятся колеса вагона».

Обложка первого номера журнала «Электричество». Июль 1880 г.

Организовано Товарищество «Электротехник». Это Товарищество устраивало дуговое электрическое освещение в садах и общественных учреждениях, применяя главным образом дифференциальные лампы Чиколева, строило мелкие частные электростанции. В 1880 г. Товарищество объявило, что оно принимает на себя устройство электрического освещения вокзалов, железных дорог, типографий, фабрик и мастерских, гостиниц, ресторанов, магазинов, клубов, театров, садов, площадей, мостов и улиц в городах и т. п. На объявлениях Товарищества изображалась дифференциальная лампа Чиколева. В тексте объявления пояснялось, что электрическое освещение дифференциальными лампами дешевле всякого другого освещения.

Статьи в журнале «Электричество» о дифференциальной лампе В.Н. Чиколева

Н.Н. Бенардос изобрел «Способ соединения и разъединения металлов непосредственным действием электрического тока», т. е. дуговую сварку. Несовершенство и малая мощность источников питания дуги, слабая изученность металлургических процессов сварки потребовали от Николая Николаевича еще несколько лет напряженной работы над новым способом соединения изделий. В результате были созданы первая в мире сварочная установка из электрогенератора и батареи аккумуляторов собственной конструкции, коммутаторы, держатели, разработана технология сварки стали, меди, бронзы, чугуна. В 1885 – 1887 гг. на «способ соединения и разъединения металлов дугой», названный автором «электрогефест», Н.Н. Бенардос получил патенты России, Франции, Бельгии, Великобритании, Австро-Венгрии, Швеции, Италии, Германии, США, Норвегии, Испании, Швейцарии. Патентование за рубежом финансировал купец, владелец доходных домов в Петербурге и Варшаве С.А. Ольшевский (иногда Ольшевского считают соавтором, хотя в действительности он был только совладельцем патентов).

Чертеж на привилегии России № 11982, выданные на имя Н.Н. Бенардоса

У самого Бенардоса хватило денег только на патентование изобретения в России в Департаменте торговли и мануфактур, привилегия на изобретение была получена 31 декабря 1886 г. В 1886 г. в Петербурге была организована первая в мире сварочная фирма «Электрогефест». Она быстро приобрела мировую известность. Промышленники многих стран, владельцы фирм, производящих паровозы, котлы и другие изделия, приезжали к Бенардосу для ознакомления с новым технологическим процессом. Они убеждались в его эффективности и быстро внедряли новшество на своих предприятиях. Изобретатель сам организовывал сварочное производство не только на заводах России, но и в Лондоне, Париже, Барселоне. К концу 1887 г. в России, странах Западной Европы и США уже работало более 100 сварочных постов. Попутно Бенардос изобрел способ контактной точечной сварки, гидро-электроплавки, мощный аккумулятор.

Устройство для сварки косвенной (независимой) дугой

В 1880 г. Товарищество «Электротехник» обратилось в Санкт-Петербургскую городскую думу с предложением осветить Невский проспект электричеством. На все согласования ушло более двух лет, только в августе 1882 г. Городская управа заключила с Товариществом договор на освещение Невского проспекта на участке от Адмиралтейства до Аничкова моста. Однако недостаточность финансовых средств не позволила завершить проект и Карл Федорович Сименс, располагая крупным капиталом, использовал инициативу русских технических кругов, скупил всю сеть и фонари, установленные Товариществом «Электротехник», и организовал электрическое освещение главной улицы столицы. После опробования с 30 декабря 1883 г. окончательно установилось освещение Невского проспекта 32 фонарями (дуговыми лампами) силой света около 1200 свечей. Две электростанции: одна на деревянной барже на реке Мойке у Полицейского (ныне Зеленого) моста с 3 локомобилями и 12 динамомашинами постоянного тока мощностью 35 киловатт, другая – у Казанской площади с 2 локомобилями и 3 динамомашинами, обслуживались штатом в 30 человек. Начала действовать «Контора освещения Невского проспекта электричеством». Таким образом, к середине 1880-х гг. торговым домом «Сименс и Гальске» осуществлялись работы не только по электрическому освещению Невского проспекта и прилегающих улиц, но и ряда домов столичной аристократии.

Электростанция на барже, р. Мойка

Карл Сименс приобрел лицензию на использование в России ламп Эдисона и построил в Санкт-Петербурге фабрику по производству соответствующего оборудования – кабелей, ламп, переключателей и т.д. Помимо неё и фабрики по изготовлению телеграфного и телефонного оборудования Карл Сименс решил построить в Петербурге завод динамо-машин, который производил бы электромоторы большой мощности, а также турбогенераторы и трансформаторы.

Завод получил название «Сименс-Шуккерт» и был построен в 1912 г.

Очевидные преимущества электроламп побудили специалистов искать возможности замены газового освещения в Зимнем дворце и прилегающих к нему залов Эрмитажа. Инженер Василий Петрович Пашков – техник дворцового управления, предложил в качестве эксперимента использовать электричество для иллюминирования дворцовых залов во время рождественских и новогодних праздников 1885 г. Опыт удался. 9 ноября 1885 г. проект строительства «фабрики электричества», предусматривающий использование только отечественного оборудования, был Высочайше утвержден с примечанием: «Зимние балы 1886 года (10 января) должны освещаться электричеством полностью». Работа была поручена В.П. Пашкову. Чтобы исключить возможность вибрации здания от работы паровых машин, размещение электростанции предусмотрели в отдельном павильоне из стекла и металла. Он находился во втором дворе Эрмитажа, с тех пор называемом «Электрическим».

Здание станции площадью 630 м² состояло из машинного отделения с 6 котлами, 4 паровыми машинами и 2 локомобилями и помещения с 36 электродинамомашинами. Общая мощность достигала 445 л.с. Первыми осветили часть парадных помещений: Аванзал, Петровский, Большой фельдмаршальский, Гербовый, Георгиевский залы, и устроили наружную иллюминацию. Было предложено три режима освещения: полное (праздничное) включать пять раз в году (4888 ламп накаливания и 10 свечей Яблочкова); рабочее – 230 ламп накаливания; дежурное (ночное) – 304 лампы накаливания. Станция потребляла около 30 тыс. пудов (520 т) угля в год.

16 июля 1886 г. в Санкт-Петербурге зарегистрировано промышленно-коммерческое «Общество электрического освещения». Эту дату принято считать датой основания первой российской энергосистемы.

Среди учредителей были «Сименс и Гальске», «Дойче Банк» и русские банкиры. С 1900 г. компания носит имя «Общество электрического освещения 1886 г.». Цель компании обозначалась согласно интересам главного учредителя Карла Федоровича Сименса: «Для освещения электричеством улиц, фабрик, заводов, магазинов и всякого рода других мест и помещений» [Устав…, 1886 г., с. 3]. Общество имело несколько отделений в разных городах страны и внесло очень большой вклад в развитие электрической сферы экономики России.

Здание Центральной электрической станции «Общества электрического освещения 1886 г.

25 августа 1890 г. организована Царскосельская электрическая станция, ставшая результатом реконструкции осветительной установки постоянного тока, существовавшей с ноября 1887 г. В 1887 г. при устройстве водопровода возникла мысль об использовании паровых машин не только для привода насосов, но и для привода динамомашин. По проекту инженера Пашкова на улицах города было установлено 120 фонарей (дуговых ламп) на чугугнных столбах – для уличного освещения, были освещены: шоссе от Царского Села в Ям-Ижору (на расстояние 4 верст), Александровский и Запасной дворцы, казармы лейб-гвардии гусарского полка и другие здания. Водопровод обслуживался двумя водонапорными башнями, соответственно было две электрических станции. На станциях первоначально было установлено 9 динамомашин. В ходе эксплуатации Царскосельская установка все время развивалась. Протяженность воздушной сети, составляющая 60 верст в 1888 г., после 1890 г. значительно увеличилась.

В 1890 г. была начата реконструкция станции с целью полного электрического освещения Царского Села и 25 августа этого же года официально открыта новая единая электростанция переменного тока напряжением 2400 В. После установки динамомашины переменного тока, реконструкции электрической установки и устройства новой сети переменного тока 2000 В, Царское Село стало первым городом в Европе, «который сплошь и исключительно освещен электричеством», как писал С. Н. Вильчковский.

На Всемирной электротехнической выставке во Франкфурте-на-Майне М.О. Доливо-Добровольский продемонстрировал первую в мире трехфазную систему передачи электроэнергии на расстояние около 170 км. В 1919 г. М.О. Доливо-Добровольский выдвинул положение о том, что передача электрической мощности переменным током на большие расстояния (сотни и тысячи километров) окажется нерациональной из-за значительных потерь в линии.

В 1893 г. отставной полковник – инженер Н.В. Смирнов обратился к петербургскому градоначальнику с просьбой разрешить ему устройство на Васильевском острове Центральной электрической станции (ЦЭС) «с правом проводить от нее по улицам воздушные кабели и употреблять электрические токи напряжением до 2000 В». ЦЭС с расчетной мощностью 800 кВт, была пущена 21 декабря 1894 г. и располагалась на 12 линии В.О. (д. 15). В котельной станции было установлено 6 водотрубных котлов Бабкок-Вилькокс. Машинный зал был оборудован 4 вертикальными паровыми машинами компаунд мощностью в 250 л.с. с давлением пара в 13 атмосфер. Подобные по мощности и типу машины только появлялись и представляли последнее слово техники. Вследствие этого технико-экономические показатели станции были несравненно лучше, чем соответствующие показатели других электростанций.

Станция инженера Н.В. Смирнова стала типовой для центральных электростанций такой величины и продолжала существовать все первое десятилетие ХХ в., служа образцом городской ЦЭС нового типа и после перехода к трехфазному току высокого напряжения.

Под руководством русских инженеров В.Н. Чиколева и Р.Э. Классона для электроснабжения Охтенского порохового завода в Петербурге введена в строй первая промышленная гидросиловая установка в России мощностью около 300 кВт. Охтенский завод стал в числе первых промышленных потребителей электроэнергии. С середины XVIII в. крупнейшее промышленное предприятие Петербурга, Охтенский завод считался хорошо оснащённым и в достаточной степени механизированным за счёт водной энергии, регулируемой собственной плотиной на реке Охте.

Хронология событий:

1877 г. – В.Н. Чиколев осуществил в цехе призматических процессов опытную установку оптического дробления света: канализацию электрического света по трубам с зеркалами от мощного источника электрического света (дуговой лампы). Также проводились опыты электрического освещения посредством рефлекторов на далекие расстояния (до 4 км). Эти работы необходимы были для обеспечения работ в ночное и вечернее время.

1879 г. – завод одним из первых фабрично-заводских предприятий применил для освещения свечи Яблочкова.

1883 г. – лампы накаливания применены для наружного освещения порохового городка. 90 ламп располагались по периметру городка протяженностью около 6 км.

В начале 1890-х гг. на заводе возникла задача объединить отдельные элементы электрического хозяйства, перейти от частной электрификации завода к полной с обеспечением электроэнергией всех цехов завода.

1890 г. – построены новые цеха, которые полностью оборудованы электрическим освещением. Проведенные с большим размахом работы были выполнены в две очереди: сначала установили 2 динамомашины мощностью по 40 кВт, аккумуляторную батарею емкостью в 500 А·ч из 120 аккумуляторов и 550 ламп накаливания, а также двигатель постоянного тока в 9 л.с, и осуществили передачу энергии к нему. Работы были выполнены в период с сентября 1890 г. по май 1891 г. Работы второй очереди заключались в установке динамомашины в 40 кВт и 400 ламп накаливания, а также в устройстве электрической сигнализации в новых цехах. Продолжительность работ по второй очереди составила полтора года. Для руководства работами был приглашен В.Н. Чиколев, вначале в качестве производителя работ, а с 1892 г. – в качестве электротехника завода.

Зимой 1895 г. в Санкт-Петербурге впервые начала функционировать электрическая железная дорога – маршрут от Зимнего дворца до Мытнинской набережной был проложен по льду через Неву. Трамвай был построен русской электрической фирмой М.М. Подобедова. Приводя зарисовку этого трамвая, идущего через Неву, иллюстрированный журнал того времени писал: «Быстрота и удобство сообщения, а также дешевизна и новизна подобного рода передвижения привлекают массу пассажиров, и новое предприятие, несомненно, не только удобно для публики, но и не безвыгодно для предпринимателей. Очень жаль, что электрические железные дороги, которые во многих городах с успехом заменили устаревшие «конки», до сих пор еще не приобрели у нас права гражданства и широкого распространения. Надо, впрочем, надеяться, что и у нас не только через Неву, но и по улицам будут со временем ходить электрические «конки».

Санкт-Петербургское Городское самоуправление заключило концессионные договоры с тремя фирмами: «Обществом электрического освещения 1886 г.», Обществом «Гелиос» и Акционерным Анонимным Бельгийским Обществом на постройку и эксплуатацию электрических станций и сетевых сооружений.

Топка угольного котла Центральной электрической станции «Бельгийского анонимного общества электрического освещения Санкт-Петербурга»


Здание Центральной электрической станции «Бельгийского анонимного общества электрического освещения» - ЦЭС «Бельгийского общества»

Центральная электростанция Акционерного Общества «Гелиос» из Кельна построена в Рождественской части Санкт-Петербурга (Новгородская ул., д. 12-14). Получив выгодный и удобный участок, обеспечивающий обилие воды, дешевизну доставки машин, стройматериалов и угля водным путем, немцы развернули бурную деятельность. В короткий срок русские рабочие возвели основные сооружения, и 27 апреля 1897 года электростанция дала промышленный ток. Корпус машинного отделения и пристроенное к нему лицевое здание заводоуправления строились по проекту гражданского инженера-архитектора В.А. Рейса. Первоначально было смонтировано 7 котлов и установлены 4 паровые машины по 1000 л.с. с генераторами однофазного тока по 3000 В. Через год вошли в строй еще 3 машины и 6 котлов. Установленная мощность станции составляла 5250 кВт.

Текст объявления Общества «Гелиос» в петербургских газетах

Центральная электрическая станция «Бельгийского анонимного общества электрического освещения» (набережная реки Фонтанки, д. 104) построена в 1897 – 1898 гг. Немецкая фирма «Шматцер и Гуэ», получившая концессию на пятьдесят лет и разрешение на строительство, в дальнейшем фигурирует как «Бельгийское анонимное общество электрического освещения» и действует под патронажем Бельгийской военной миссии.

Первая паровая машина мощностью 350 кВт была пущена в эксплуатацию 22 мая 1898 г. Через три года на станции работало уже 18 паровых машин общей мощностью 5500 кВт, а в 1903 г. здесь устанавливается первая паровая турбина «Парсонс» мощностью 680 кВт.

В 1897 – 1898 гг. построена Центральная электрическая станция «Общества электрического освещения 1886 г.» (Обводный канал, д. 76). 16 ноября 1898 г. в торжественной обстановке был осуществлен пуск станции в эксплуатацию. В строй вошли четыре паровых котла и шесть паровых машин, суммарная мощность которых составила 4200 кВт. Фирма «Сименс и Гальске» занималась поставками оборудования для Центральной электростанции «Общества электрического освещения 1886 г.» (ЦЭC «ОЭО 1886 г.»). На электростанции в то время работало более ста человек. Семь небольших электрических станций, которые принадлежали «Обществу электрического освещения 1886 г.», после пуска ЦЭС закрыли, а всех абонентов перевели на шины новой станции.

0

Для нормального функционирования и жизнедеятельности любой постройки или здания необходимы системы, благодаря которым обеспечивается нормальная жизнь и деятельность любых потребителей. В противном случае, здание будет непригодно к эксплуатации. Для выполнения этих задач все постройки снабжаются всевозможными инженерными системами. Разнообразие и количество таких систем напрямую зависит от предназначения помещений или самого здания.

В зависимости от расположения, все системы и коммуникации, можно разделить на два вида. Если системы расположены внутри здания, их называют - внутренние, а если снаружи сооружения или здания - наружные.

Инженерные сети которые Вы можете у нас заказать отвечают всем стандартам качества, гарантируют посетителям и жильцам дома уют, комфорт, обеспечение теплом.

В зависимости от функций, инженерные системы делят на группы:

  • Системы, отвечающие за теплоснабжение.
  • Системы, отвечающие за подачу воды и за ее отведение.
  • Системы, отвечающие за кондиционирование и вентиляцию.
  • Системы, отвечающие за освещение с наружной стороны здания.
  • Системы, отвечающие за снабжение газом.
  • Сети, обеспечивающие сигнализацию и связь.
  • Системы, отвечающие за подачу электричества.

Для того, чтобы понять в каком виде организованы инженерные системы, необходимо более подробно их проанализировать.

Инженерные системы теплоснабжения

Это одна из наиболее значимых инженерных систем, которая отвечает за обогрев помещений и здания целиком. Чаще всего используют централизованные и индивидуальные системы теплообеспечения. Функционирование таких систем возможно благодаря таким частям, как:

  • Источник, который производит тепло. Этими источниками могут быть разнообразные котельные или ТЭЦ.
  • Тепловые сети - это устройства, которые транспортируют тепло к зданию или помещению.
  • Приборы, функция которых заключается в отдаче тепла потребителю. Такими приборами могут быть разнообразные отопительные радиаторы и калориферы.

Не стоит забывать, что для нормальной жизнедеятельности человека ему необходимы максимально комфортные условия. А одним из показателей комфорта любого помещения считается тепло. Теплые помещения, также являются залогом здоровья.

Инженерные системы водоснабжения

Система водоснабжения - это комплекс инженерных систем, который включает в себя системы подающие воду (водоснабжение) и системы, отвечающие за отведение воды (водоотведение).

Задача данных систем состоит в предоставлении воды потребителям в необходимом количестве и требуемого качества. Все системы водоснабжения делят на:

  • Противопожарные.
  • Производственные.
  • Хозяйственно-питьевые.

Также их можно разделить в зависимости от вида, в котором они построены:

  • Промышленные.
  • Поселковые.
  • Городские.

Основными составляющими любой системы отвечающей за подачу и отведение воды, принято считать:

  • Водопроводные сети.
  • Водоводы.
  • Водозаборные сооружения.

Инженерные системы вентиляции

Эти системы также включают комплекс систем - это система вентиляции и система кондиционирования.

Ни для кого не секрет, что чистый воздух является залогом здоровья, поэтому все жилые или промышленные здания не могут сдаваться в эксплуатацию баз необходимых систем вентиляции и кондиционирования. Кроме наличия этих систем необходима их качественная и эффективная работа.

Главной задачей системы вентиляции является подача чистого, свежего воздуха, и очищение его от разнообразных примесей. При эксплуатации закрытых помещений образование вредных примесей воздуха происходит очень часто, можно сказать, постоянно. В зависимости от задач и эксплуатации, все системы вентиляции можно разделить на:

  • Естественные и искусственные.
  • Приточные и вытяжные.
  • Наборные и моноблочные.

Главными задачами системы кондиционирования является: очистка, охлаждение, подогрев воздуха, удаление из него лишней влаги. Также, при установка систем кондиционирования есть возможность для дополнительной ионизации воздуха. При условном разделении систем кондиционирования по мощности можно выделить промышленные и бытовые.

Инженерные системы освещения

Задачей системы наружного освещения обеспечения является обеспечение нормальной и комфортной жизни человека. Грамотная и правильная организация освещения - это залог безопасного и комфортного использования всей площади здания и помещений в темное время суток. Также стоит отметить, что при правильном освещении появляется верное эстетическое восприятие зданий.

Для гарантии полноценного освещения жилых зон, в наше время, используют такие методы размещения световых приборов, как:

  • На несущих тросах.
  • На фасадах зданий.
  • На подвесах.
  • На опорах.

Инженерные системы газоснабжения

Благодаря тому, что газ является недорогим и простым в использовании сырьем он занял важную часть в жизни человека. Задачей системы газоснабжения является предоставление газа населению в необходимом объеме и давлении. Количество и давлении должно обеспечить самый оптимальный режим работы потребителей. Вся система газоснабжения состоит из сложного комплекса построек и может включать:

  • Потребительские отводы, которые подсоединены к центральной городской сети, функцией которых является подведение газа к зданию.
  • Газопроводы внутри здания, функцией которых является распределение газа по отдельным газовым потребителям внутри одного здания.

В современном мире много внимания уделяют безопасности любого помещения или здания. Обеспечением безопасности разнообразных зданий и помещений занимается сеть сигнализации и связи. Функции этих сетей заключаются в обеспечении работоспособности сигнализаций (пожарной и охранной), предоставлении интернет, телефонной связи, телевидения и радио. Все это способно функционировать благодаря системе состоящей из разнообразных слаботочных кабелей и проводов. Напряжение в этой системе составляет около 25В.

Инженерные системы электроснабжения

Основной функцией этой системы является обеспечение работы всевозможных инженерных систем здания. Благодаря этому система энергоснабжения является основной системой любых зданий. Это все становится возможным при правильном проектировании и установке системы электроснабжения. Данная система может в себя включать разнообразные источники энергии, преобразователи, системы которые передают и распределяют электроэнергию среди потребителей.

Среди основных элементов, из которых состоит система электроснабжения стоит выделить:

  • Линии электропередач;
  • Разнообразные распределительные устройства и подстанции;
  • Инженерные сети и приборы, которые увеличивают работоспособность всей системы.

5 лекция на тему:

Развитие электромагнитной теории и электротехники

Первые наблюдения явлений, известных под названием электричества и магнетизма, относятся ко времени античности и были произведены народами, живущими в бассейне Средиземного моря, особенно греками. Началось с обнаружения свойства натертого янтаря притягивать легкие предметы. Кроме того, в древнем мире наблюдали явления атмосферных разрядов и анестезирующее действие некоторых видов рыб при соприкосновении их с человеческим телом. Но представлений о том, что в этом проявляются электрические явления, не возникало.

Сам термин «электричество» появился на рубеже XVI и XVII веков, а затем постепенно наполнялся содержанием. Начиная с XVIII века, происходит более быстрое накопление знаний, но только в XIX веке электричество стало служить человеку.

Переломный момент в истории электричества произошел в 1600 г., когда вышел в свет замечательный труд английского естествоиспытателя Уильяма Гильберта «De Magnete», представляющий собой один из первых научных трактатов, написанных на основе экспериментов. До этого считалось, что электрические силы присущи только янтарю и одной из разновидности турмалина – линкуриону, а магнитные только железу. Гильберт экспериментально доказал, что электризация при трении обнаруживается у многих веществ – стекла, смолы, минералов и пр., а Земля является огромным магнитом, хотя и не состоит из одного только железа. Гильберт ввел понятие «vis electrica» («сила янтаря»), т.е. электрической силы. С XVIII века производный термин «electricitas» стал широко применяться. В русской научной литературе в XVIII веке получил распространение термин «электричество».

Мушенбрук обратил внимание на различный характер электризации стекла и янтаря, что способствовало открытию в 1733 году Шарлем Франсуа Дюфе «смоляного» и «стекольного» электричества (положительного и отрицательного, согласно терминологии Бенджамина Франклина). К числу наиболее известных достижений Мушенбрука принадлежит лейденская банка – первый конденсатор, изобретенный им в 1745 году. При этом он создал первый прообраз его внешней обкладки (в первых опытах в ее качестве использовалась рука экспериментатора, державшего банку). Мушенбрук обратил внимание на физиологическое действие разряда, сравнив его с ударом ската (ученому принадлежало первое использование термина «электрическая рыба»), провел опыты для проверки своих предположений. При этом он отрицал электрическую природу молнии, пересмотрев свои взгляды лишь после знаменитых опытов Франклина.

Франклин объяснил принцип действия лейденской банки, установив, что главную роль в ней играет диэлектрик, разделяющий проводящие обкладки; ввел общепринятое теперь обозначение электрически заряженных состояний "+" и "-"; разработал общую "унитарную" теорию электрических явлений, исходившую из предположения о существовании единой электрической субстанции, недостаток или избыток которой обусловливает знак заряда тела. Большая заслуга Франклина – установление тождества атмосферного и получаемого с помощью трения электричества и доказательство электрической природы молнии. Обнаружив, что металлические острия, соединённые с землёй, снимают электрические заряды с заряженных тел даже без соприкосновения с ними, Франклин предложил эффективный метод защиты от грозового разряда – молниеотвод.

Франклину принадлежит также ряд других технических изобретений: лампы для уличных фонарей, экономичная "франклиновская" печь, особый музыкальный инструмент, "электрическое колесо", вращающееся под действием электростатических сил, применение электрической искры для взрыва пороха и др.

Сущность электрических и магнитных явлений и связи между ними тогда не знали. Гильберт считал эти явления совершенно различными, и этот взгляд главенствовал до середины XVIII века, когда, благодаря трудам члена Петербургской АН Франца Ульриха Теодора Эпинуса (1724–1802), было положено начало новым взглядам: наука обогатилась представлениями о сходстве электрических и магнитных явлений. Вплоть до конца XVIII века ученые занимались только изучением статического электричества и его применением в практических целях: для лечебных целей, для взрыва пороха от искр при разряде и для передачи зарядов на расстояние – первой попыткой создания электрического телеграфа.

В течение XVIII века накопился большой опытный материал о статическом электричестве. Было установлено, существование проводников и непроводников электричества, доказано существование двух его родов – положительного (стеклянного) и отрицательного (смоляного). Удалось найти более совершенные методы получения значительных статических зарядов с помощью машин, изобрести способы их накопления при помощи лейденских банок и конденсаторов. Было обнаружено явление электростатической индукции. В конце XVIII века Кулон установил и количественную характеристику взаимодействия зарядов (закон Кулона).

Хотя все эти достижения еще не предвещали широкого применения электричества для практических целей, они имели существенное значение. Были созданы первые теории электричества, усовершенствована методика эксперимента, разработан ряд приборов.

В результате процесса изучения электрического тока, электротехника в последней трети XIX века стала важной самостоятельной отраслью науки и техники и оказала революционизирующее влияние на всю технику в целом, а в связи с этим и на все развитие производительных сил общества.

Разнообразные применения электрической энергии можно разделить на две группы:

– в первой электрическая энергия используется в значительных количествах с целью ее превращения в другие виды энергии: механическую (привод, тяга), световую (освещение), тепловую (термические процессы, отопление), химическую (электролиз) и т.п.

– ко второй группе относятся такие применения электрической энергии, при которых, хотя и происходят ее превращения в другие виды энергии, но они не являются целью. Здесь используются электрические импульсы или малые токи для воздействия на какие-либо индикаторы или приемники (телеграф, телефон, приборы управления или регулирования и т.д.).

В последнее десятилетие XVIII века внимание ученых обратилось к новым электрическим явлениям, обнаруженных Л. Гальвани и развитых Алессандро Вольта. Был найден новый вид электричества, который считали отличным от статического – электрический ток. В 1800 году Вольта, анализируя опыты и выводы Гальвани, приходит к построению первых генераторов электрического тока. Это Вольтов столб и чашечная батарея. Начался первый период электротехники – период изучения гальванического тока. Попытки его применения показали, что электрический ток может дать для практики то, что не способны дать другие области физики.

Основные периоды развития электротехники

Первый период развития электротехники (1800 – 1831 гг.) был сравнительно малоплодотворным для практики, но весьма богатым для изучения свойств электричества и потенциальных возможностей его практического применения.

В 1800 г. Карлейль и Никольсон разложили с помощью тока воду на водород и кислород. У. Крейкшенк показал в том же году, что и соли различных металлов также разлагаются током. В 1801 г. У. Х. Вулстен опытным путем доказал идентичность тока, получаемого от вольтова столба с теми зарядами, которые получаются при явлениях статического электричества. Были обнаружены тепловые действия тока – нагревание проводника. В 1802 выдающийся физик В. В. Петров, построив громадный вольтов столб из 4 200 медных и цинковых кружочков, дававший напряжение 1 700 В, получил устойчивую электрическую дугу между угольными электродами. Тогда же он обнаружил и явление тлеющего разряда при прохождении электрического тока через разреженные газы.

В. Риттер в 1803 г. обнаружил возможность аккумулирования энергии гальванического тока. В 1807–1808 гг. Х. Дэви произвел электролиз многих металлических солей и получил металлы в чистом виде (натрий, калий, кальций, стронций, магний, барий, бор). Петров, производя электролиз жиров и масел, обнаружил изоляционные свойства этих веществ.

Первая половина XIX века время триумфального развития промышленного переворота. Машинная индустрия, основанная на паровом двигателе, как источнике энергии, охватывала все новые и новые отрасли промышленности. На смену гужевому транспорту пришли железные дороги и паровые автомобили и тракторы, паровые машины на водном транспорте вытесняли паруса и весла.

Но появилась необходимость и в применении электрической энергии. Она основывалась на свойстве тока почти мгновенно распространяться на большие расстояния, что можно было использовать для создания электрической проводной связи. Вторым важным свойством была способность тока разлагать жидкости на составные части.

На этой основе Земмеринг построил электролитический телеграф, индикатором в котором служили пузырьки газа, образуемого при разложении жидкости током. Для практики этот телеграф оказался непригоден, однако он пробудил общий интерес к этому виду связи.

Второе применение – гальванический способ подрыва мин на расстоянии. В 1812 г. в Петербурге на Неве, а в 1815 г. в Париже на Сене Павел Львович Шиллинг демонстрировал методы гальванического взрыва подводных мин.

Существенные перемены в первом периоде развития электротехники оказались возможными в связи с открытием Эрстедом в 1819 г. электромагнетизма, т.е. действия тока на магнит. Опыты Эрстеда, продолженные и развитые Араго, Ампером и др., привели к созданию соленоида, мультипликатора, электромагнита и гальванометра. Опытами Барлоу, Фарадея и Генри была показана возможность превращения электрической и магнитной энергии в механическую, т.е. возможность создания электродвигателя.

В целом, в первом периоде только нащупывались пути применения гальванизма и электромагнетизма. Тормозом являлось то, что источники тока – вольтов столб и батареи элементов были пригодны только для лабораторных испытаний, т.е. маломощны и ненадежны в эксплуатации. Открытие в 1821 г. Зеебеком термоэлектричества также не обеспечило создание пригодных для практики генераторов. В связи с этим в первой трети XIX века развивалось только то направление электротехники, которое довольствовалось малыми или импульсными токами.

В первый период Ампер разработал многие вопросы взаимодействия токов, обобщенные в опубликованной в 1826–1827 гг. теории электродинамических явлений; начал свои эксперименты, в области индукции Фарадей, Георг Ом опубликовал трактат, посвященный закономерностям простых гальванических цепей. Био, Савар и Лаплас дали математическое выражение для силы взаимодействия между токами и магнитами, а Ампер для силы взаимодействия между токами.

В 1826 г. Георг Ом экспериментальным путем открыл основной закон электрической цепи и ввел понятие сопротивление. Он также научился вычислять сопротивление металлических проводников. Ученый мир поначалу не воспринял закон Ома. Первыми его признали русские физики Ленц и Якоби. И только в 1842 г. к Ому пришло признание – Лондонское Королевское общество наградило его золотой медалью.

Таким образом, в первом периоде развития электротехники (1800 –1831 гг.) были созданы предпосылки для ее развития, для последующих применений электрического тока.

Второй период развития электротехники (1831 – 1867 гг.) начинается с выдающегося открытия Майкла Фарадея – открытия электромагнитной индукции. Поэтому второй период можно назвать фарадеевским. До открытия способа превращать магнетизм в электричество применение последнего не выходило за пределы опытов и научных развлечений. Вся современная электротехника, основанная на применении больших токов имеет своим истоком открытие Фарадея.

Однако в этот период, независимо от открытия Фарадея развивалась и те области электротехники, для которых было достаточно импульсов или малых токов. В 1828–1932 гг. Шиллинг создал пригодный для практики электромагнитный телеграф, использовав в качестве индикатора переданных по определенному коду импульсов мультипликатор. Этим он открыл путь многим ученым в этой области, таким как Якоби, Морзе, Уитстон и др. Телеграфия в 1840-е гг. стала основной областью применения электрического тока. К концу 1860-х гг. Европа и Северная Америка были покрыты густой сетью телеграфных линий. Что касается подводных линий, то сначала они были проложены через реки, а в 1850 г. был проложен кабель через Ламанш, правда только через год удалось добиться хорошей связи. В 1856 г. была образована Атлантическая телеграфная компания для устройства телеграфной связи между Англией и США. Кроме огромных средств к ее работе были привлечены крупные научные силы во главе с У. Томсоном (лорд Кельвин). Длина этой линии составляла 3 600 км. В 1866 г. после десяти лет тяжелых трудов и устранения многочисленных аварий и неполадок была, наконец, установлена связь между Европой и Америкой.

Развитие телеграфа сыграло важную роль в разработке и установлении системы международных электрических единиц, способствовало возникновении и совершенствованию электрометрии и построению измерительных приборов.

Создание электродвигателя также могло основываться только на электромагнитном принципе. По этому пути и пошли изобретатели, создавшие электромоторы с постоянными магнитами. Однако для них необходимы были надежные источники тока, которыми не могли служить батареи гальванических элементов.

Академик Якоби в 1838 г. изобрел гальванопластику, на основе которой стала развиваться еще более широкая область применения электричества – гальваностегия.

В это время велись опыты и в области использования тока в электротермических процессах. Джоуль в 1841 г. и независимо от него в 1842 г. Ленц открыли закон выделения теплоты при прохождении тока.

Джеймс Прескотт Джоуль (1818–1889) определил механический эквивалент тепла.

Эмилий Христианович Ленц (1804–1865) сформулировал правило по которому наведенный ток всегда направлен так, что его магнитное поле противодействует процессам, вызывающим индукцию.

Но наибольший интерес во втором периоде развития электротехники, после телеграфии, вызывало электрическое освещение. Здесь уже были созданы основные типы дуговых ламп, и множество ламп накаливания.

Для всего этого нужен был надежный источник дешевой электроэнергии. Таким стал электромашинный генератор, основанный на принципе электромагнитной индукции, открытой Фарадеем.

Созданию его способствовало развитие науки. Отметим установленные Кирхгоффом законы разветвленной электрической цепи, работы Вебера и Гаусса в области теории магнетизма, установления закона сохранения и превращения энергии, установления закона тепловых действий тока (закон Джоуля – Ленца) и обширные исследования Фарадея.

Познакомившись с экспериментальными исследованиями Фарадея в области электричества, Максвелл понял, что для торжества и развития его идей необходимо переложить их на строгий математический язык. В 1873 г. он создал обобщающую теорию электричества и магнетизма.

Третий период развития электротехники (1867 – 1891 гг.) начался в то время, когда на основе явления электромагнитной индукции и принципа самовозбуждения («динамоэлектрический принцип») был построен генератор Грамма, дававший дешевую электроэнергию. Во второй половине 1870-х гг., благодаря работам Яблочкова, появились генераторы однофазного переменного тока. Они получили применение лишь благодаря свече Яблочкова. Свеча Яблочкова дала возможность установить электрическое освещение в общественных помещениях, улицах, парках и т.д. В 1879 г. была изобретена лампа накаливания Т. Эдисона. Она, кстати вызвала к жизни новую отрасль – вакуумную технику.

Временные преимущества переменного тока с отмиранием свечи Яблочкова и широким распространением электродвигателей постоянного тока, укрепили позиции сторонников последнего. Однако увеличение спроса на электроэнергию и стремление понизить ее стоимость, выдвинули проблему создания больших электростанций и передачи энергии на большие расстояния. В 1880 г. Депре и Лачинов установили, что для уменьшения тепловых потерь надо передавать ток высокого напряжения. Все попытки передавать постоянный ток высокого напряжения, вырабатываемый специальными генераторами к успеху не привели. В 1885 г. венгерскими инженерами М. Дери, О. Блатти и К. Циперновским был создан промышленный тип однофазного трансформатора. Началось строительство электропередач на переменном токе, однако однофазный ток не годился для применения в электроприводах. Поэтому для этой цели применялись старые электростанции постоянного тока и старые генераторы в режиме двигателей.

Неудобство от существования двух электросетей были преодолены с открытием Феррарисом явления вращающегося магнитного поля и созданием на его основе двухфазной (Никола Тесла) и трехфазной (Михаил Иосифович Доливо-Добровольский) систем.

Четвертый период развития электротехники начался в 1891 г. и продолжается до сих пор. Его начало связано с и созданием паровых турбин Парсонса, пригодных для установки на электростанциях. IV период характеризуется огромным ростом производства электроэнергии не только на тепловых, но и гидро- и атомных электростанциях. В этот период зародились и невероятно развились радиотехника и электроника.

ВВДЕНИЕ

Вместо термина "постоянный ток" лучше применять термин "постоянное напряжение". То же касается и термина "переменный ток", лучше применять термин "постоянное напряжение". Напряжение в сети, у батареи, как правило, первично, величина постоянная (за исключением аварийных режимов) , а величина тока зависит от нагрузки (в соответствии с законом Ома) : I = U/R, где I – сила тока (в амперах) , U - напряжение (в вольтах) , R - сопротивление (в омах). Все единицы в системе СИ, они применяются в технике, физике и т. д. Употребляются и кратные величины, например, киловольты (1000 х вольт).

Электрическим током называют упорядоченное (направленное) движение заряженных частиц. Электрический ток возникает при упорядоченном перемещении свободных электронов (в металлах) или ионов (в электролитах).

Основное отличие постоянного напряжения, что оно постоянно по величине и знаку, а постоянный ток "течет" в одну сторону, например, по металлическим проводам (носители тока электроны) от минусового зажима источника напряжения к плюсовому (в электролитах ток создают положительные и отрицательные ионы) .

Переменное напряжение и ток изменяются по закону синусоиды, от нуля увеличивается до положительного амплитудного значения (положительный максимум) , потом уменьшается до нуля и продолжает уменьшаться до отрицательного амплитудного значения (отрицательный максимум) , затем увеличивается, переходя через ноль вновь до положительного амплитудного значения.

Переменный ток меняет за период, как свою величину, так и направление движения тока.

Среднее значение силы тока за период равно нулю.

Действующее значение силы переменного тока - сила такого постоянного тока, при котором средняя мощность, выделяющаяся в проводнике в цепи переменного тока, равна мощности, выделяющейся в том же проводнике в цепи постоянного тока. Когда говорят о токах и напряжения в сети переменного тока, имеют ввиду, их действующие значения. Напряжение в сети 220 вольт это действующие напряжение сети.

ИСТОРИЯ ЭЛЕКТРИЧЕСКОГО ТОКА

Одно из самых великих открытий человечества - это электричество. Благодаря электричеству наша цивилизация смогла интенсивно развиваться и развивается до сих пор. Электричество является, пожалуй, самым экологическим видом энергии. И наверняка скоро оно станет основным видом энергии, после того как мы исчерпаем сырьевые ресурсы нашей планеты. Но кто же изобрел или обнаружил электричество? Давайте обо всем по порядку...

Обнаружение электричества уходит далеко в прошлую эру. Эго обнаружил греческий философ Фалес в VII веке до н. э. Он обнаружил, что если потереть об шерсть янтарь, то он может притягивать легкие предметы. Кстати электрон по-гречески означает "янтарь", а электричество - "янтарность". Эти термины впервые появились только в 1600 году, потому что наблюдения Фалеса так и остались наблюдениями.


1650 г. Магдебургский бургомистр Отто фон Герике построил электростатическую установку. Это металлический стержень, на котором закреплен шар из серы. С этим устройством получилось наблюдать свойства притягивания и отталкивания.

1745 г. В этом году собран первый электрический конденсатор, который получил название Лейденская банка. Автором этого изобретения является Питер ван Мушенбрук из Голландии.

1747 г. Появляется работа (очерк) американца Бенджамина Франклина "Эксперименты и наблюдения над электричеством". Это была, по сути, первая теория электричества, в которой Франклин обозначает электричество термином "нематериальная жидкость". В этой работе так же выдвигается теория о существовании положительных и отрицательных зарядов. Еще Б. Франклин изобрел громоотвод и с его помощью он смог наглядно доказать, что молния имеет электрическую природу.

1785 г. Этот год стал переломным, и позволил перевести исследование электричества в научную плоскость. Это открытие Закона Кулона.

В 1800 году происходит еще одно ключевое изобретение, которое позволило исследовать электричество более предметно, и поставить много полезных опытов. Это изобретение итальянцем Вольтом первого источника постоянного тока. Это был первый гальванический элемент, состоящий из серебряных (позже начали использовать медь вместо серебра) и цинковых кружков, а между ними помещалась бумага, смоченная в соленой воде.

В 1821 году, Ампер (французский физик) обнаружил, что магнетизм вокруг проводника появляется только при подаче на него электрического тока, а при статическом электричестве магнетизм отсутствует.

Также неоценимый вклад в исследование электричества внесли ученые Джоуль, Ленц, Ом и Гаусс. Гаусс в 1830 году уже описывает главную теорему теории электростатического поля.

Фарадей также изобрел первый электродвигатель. Это был проводник с электрическим током, который мог вращаться вокруг постоянного магнита.