Предикаты. Операции над предикатами.  логические операции над предикатами. Законы пронесения кванторов через импликацию

Предикаты. Операции над предикатами. логические операции над предикатами. Законы пронесения кванторов через импликацию

Рассматриваемые вопросы
1.
Понятие предиката. Область определения предиката.
2.
Одноместный предикат. Многоместный предикат.
3.
Логические операции над предикатами.

Понятие предиката

Выразительные возможности языка логики высказываний очень
ограничены. С ее помощью невозможно проанализировать
внутреннюю структуру даже очень простых рассуждений.
Пример: есть два умозаключения.
Любой человек смертен, Сократ - человек, следовательно, Сократ
смертен.
Крокодилы не летают, Луна - головка швейцарского сыра,
следовательно, сборная России выиграет чемпионат мира по футболу.
X Y Z.
Расширение
логики
высказываний
называется логикой предикатов

Понятие предиката

Первое высказывание представляется строгим логическим выводом,
второе же не соответствует никакому здравому смыслу.
Эти примеры подтверждают тезис о том, что в логике высказываний не
рассматривается внутреннее содержание простейших высказываний
(атомарных формул).
Не имеется
высказывания.
возможности
«влезть»
внутрь
элементарного
Расширение логики высказываний называется логикой предикатов.

Понятие предиката

В высказывании все четко: это - конкретное утверждение о
конкретных объектах - истинное или ложное.
Предикат - предложение, похожее на высказывание, но все же им не
являющееся: о нем нельзя судить, истинно оно или ложно.

Понятие предиката

Логика предикатов, как и традиционная формальная логика,
расчленяет
элементарное
высказывание
на
субъект
(подлежащее, хотя оно может играть и роль дополнения) и
предикат (сказуемое, хотя оно может играть и роль
определения).
Субъект – это то, о чем что-то утверждается в высказывании
Предикат – это то, что утверждается о субъекте
Например, в высказывании “7 - простое число”, “7” – субъект,
“простое число” – предикат.
Это высказывание утверждает, что “7” обладает свойством
“быть простым числом”.

Понятие предиката

ПРИМЕР “7 - простое число”
Если в рассмотренном примере заменить конкретное число 7
переменной х из множества натуральных чисел, то получим
высказывательную форму:
“х – простое число”
При одних значения х (например, х=13, х=17) эта форма дает
истинные высказывания, а при других значениях х (например,
х=10, х=18) эта форма дает ложные высказывания.
Эта высказывательная форма определяет функцию одной
переменной х, определенной на множестве N, и принимающую
значения из множества {1;0}.
Здесь предикат становится функцией субъекта и выражает
свойство субъекта.

Понятие предиката

В естественной речи часто встречаются сложные высказывания,
истинность которых может изменяться при изменении объектов,
о которых идет речь, хотя форма самого высказывания остается
прежней.
Например:
«У кошки четыре ноги» - истинно,
«У слона четыре ноги» - истинно,
«У человека четыре ноги» - ложно.
Все эти высказывания имеют одну форму:
«У субъекта х четыре ноги».

Понятие предиката

Таким образом, раздел математической логики, изучающий логические
законы, общие для любой области объектов исследования
(содержащей хоть один объект) с заданными на этих объектах
предикатами (т. е. свойствами и отношениями) называется ЛОГИКОЙ
ПРЕДИКАТОВ
Объект – некоторая часть окружающего нас мира, которая может быть
рассмотрена как единое целое
Субъект – (в логике) подлежащее суждения, то есть предмет, о
котором что-либо говорится или мыслится
Переменное высказывание, истинностное значение которого зависит
от параметра, и называется предикатом.
Предикат от лат. Praedicatum – сказанное. Таким образом, предикат
есть функция, определенная на некотором множестве параметров и
со значениями в {0, 1}.

Понятие предиката

Определение 1. Одноместным предикатом Р(х) называется такая функция
одной переменной, в которой аргумент х пробегает значения из некоторого
множества М, а функция при этом принимает одно из двух значений: истина
или ложь.
Само множество М называется предметным множеством, а аргументы
x1,...,xn M - предметными переменными.
Множество М, на котором задан предикат, называется областью определения
предиката.
Множество, на котором предикат принимает только истинные значения,
называется областью истинности предиката Р(х).
Определение 2. N-местным предикатом называется такая функция n
переменных Q(x1, x2, …,xn), определенная на множестве М=М1 М2 … Мn
и принимающая на этом множестве одно из двух значений: истина или ложь.
Можно считать, что высказывание это нульместный предикат, то есть
предикат, в котором нет переменных для замены.

10. Понятие предиката. Примеры

Пример 1
Пусть предметное множество М есть класс млекопитающих.
Рассмотрим одноместный предикат Р(х):
«У х четыре ноги».
Тогда Р(слон) = 1,
Р(кошка) = 1,
Р(человек) =0.
Пример 2
Пусть М - множество натуральных чисел.
Рассмотрим двухместный предикат G(x,y): х<у.
Тогда, например, G(l,3) = l,
G(8,5) = 0.

11. Классификация предикатов

Предикат называется:
А) Тождественно истинным, если значение его для любых
аргументов есть «истина»
Предикат “x+y=y+x” является тождественно истинным.
Б) Тождественно ложным, если значение его для любых
аргументов есть «ложь»
Предикат “x+1=x” – тождественно ложным.
В) Выполнимым, если существует, по крайней мере, одна nсистема его аргументов, для которой значение предиката есть
«истина».
Предикат “x+y=5” – выполнимым.

12. Равносильность предикатов

Два n-местных предиката Р(х1, х2, ..., хn) и Q(x1, x2, ..., хn),
заданных над одними и теми же множествами М1, М2, …, Мn,
называются равносильными, если набор предметов (элементов)
а1 М1, а2 М2, .., an Мn превращает первый предикат в
истинное высказывание Р(а1, а2, …, аn) в том и только в том
случае, когда этот набор предметов превращает второй предикат
в истинное высказывание Q(а1, а2, …, аn).
Предикаты Р(х1, х2, ..., хn) и Q(х1, х2, ..., хn) равносильны тогда
и только тогда, когда их множества истинности совпадают
Р+ = Q+.
Переход от одного равносильного предиката к другому
называется равносильным преобразованием первого

13. Пример

Пусть требуется решить
уравнение (найти множество
истинности предиката):
4х-2=-3х-9
Преобразуем его равносильным образом:
4х-2=-3х-9 4х+3х=-9 + 2 x = -1.
Ответ:{-1} - множество всех решений данного уравнения
(множество истинности данного предиката).

14. Следование предикатов

Предикат Q(х1, х2, ..., хn), заданный над множествами М1, М2,
…, Мn, называется следствием предиката Р(х1, х2, ..., хn),
заданного над теми же множествами, если он превращается в
истинное высказывание на всех тех наборах значений
предметных переменных из соответствующих множеств, на
которых в истинное высказывание превращается предикат Р(х1,
х2, ..., хn).
Предикат Q является следствием предиката Р тогда и только
тогда, когда Р + Q +.
Обозначается P Q

15. Пример

Одноместный предикат, определенный на
множестве
натуральных чисел, «n делится на 3» является следствием
одноместного предиката, определенного на том же множестве,
«n делится на 6».
Из двух предикатов первый будет следствием второго, если
считать, что оба предиката заданы на множестве Z целых чисел.

16. Упражнение 1.

Среди следующих предложений выделите предикаты:
1) Луна есть спутник Венеры
2) Планеты х и y принадлежат Солнечной системе
3) 5 5 70 6 10 150
2
4) x 3x 2 0
4
x
3x 8
5)
6) Любое простое число не имеет делителей, отличных от себя и 1
7) Натуральное число n не меньше 1
8) Треугольник АВС равен треугольнику А1В1С1
9) x 2 2 x 1 0
1
10) 1 tg 2 x
cos 2 x
11) ln x sin x
Ответ: 2); 4); 7)-11)

17.

Упражнение 2.
Среди следующих предложений выделить предикаты и для каждого из
них указать область истинности.
1) x+5=1
2) При х=2 выполняется равенство х2-1=0
3) х2-2x+1=0
4) Существует такое число х, что х2-2x+1=0
5) x+2<3x-4
6) Однозначное число x кратно 3
7) (x+2)-(3x-4)
1)
2)
3)
4)
5)
6)
7)
Одноместный предикат P(x), Ip=-4
Ложное высказывание. Не предикат
Одноместный предикат P(x), Ip=1
Истинное высказывание. Не предикат
Одноместный предикат P(x), Ip=(3;+)
Одноместный предикат P(x), Ip=(0;3;6;9)
Не предикат

18. Логические операции над предикатами

Отрицанием предиката P(x) называется новый предикат,
множество истинности которого является дополнением
множества истинности предиката Р(х), то есть:
I p CI p
Пример. Предикат P(x) - «x<3»
Отрицание предиката – «x>3»

19. Логические операции над предикатами

Конъюнкцией предикатов P(x) и Q(x) называется новый

значениях, при которых каждый из предикатов P(x) и Q(x)

Множество истинности есть пересечение множеств истинности
I P Q I p I q
Пример. Предикаты P(x) - «x>-3» и Q(x) – «x<3»
Конъюнкция предикатов – «(x>-3) Λ (x<3)»

20. Логические операции над предикатами

Дизъюнкцией предикатов P(x) и Q(x) называется новый
предикат, который принимает значение 1 при тех и только тех
значениях, при которых хотя бы один из предикатов P(x) и Q(x)
принимает значение 1 и принимает 0 во всех остальных случаях.

I P Q I p I q
Пример. Предикаты P(x) - «x≠0» и Q(x) – «y ≠0»
Дизъюнкция предикатов – «(x ≠0) v (y ≠0)»

21. Логические операции над предикатами

Импликацией предикатов P(x) и Q(x) называется предикат,
который имеет значение ложь на тех и только на тех наборах
аргументов х, на которых P(x) имеет значение 1, а Q(x) –
значение 0.
Множество истинности есть объединение множеств истинности
I P Q CI p I q
Пример. Предикаты P(x) - «Натуральное число х делится на 3».
Q(x) – «Натуральное число х делится на 4»
Импликация предикатов – «Если натуральное число х
делится на 3, то оно делится и на 4»

22. Логические операции над предикатами

Эквиваленцией P(x) и Q(x) называется предикат, который имеет
значение истина на тех и только на тех наборах аргументов х, на
которых значения истинности P(x) и Q(x) совпадают.
Множество истинности есть объединение множеств истинности
I P Q (CI p CI q) (I p I q)

23.

Упражнение 3.
Пусть даны предикаты P(x): «х – четное число» и Q(x): «х кратно 3»,
определенные на множестве N. Найти области истинности
предикатов:
1) P(x) Λ Q(x)
2) P(x) v Q(x)
3) ¬P(x)
4) P(x) -> Q(x)
Ip = {2,4,6,8,10,12,…2n,…}, Iq= { 3,6,9,12,...3n,…}
1)
2)
3)
4)
{6,12,…6n,…}
{2,3,4,6,…2n,3n,…}
{1,3,5,…2n-1,…}
{1,3,5,…2n-1,…} v {3,6,9,…3n,…}

24.

Упражнение 4.
Если значения x,y принадлежат отрезку , то в списке
выражений следующего вида:
1) х=2 или y=7
2) x-y=7
3) x+y<2
4) x 2 5 0
5) 3 6) x>12
Число истинных и ложных предикатов соответственно равно:
А) 2,4
Б) 1,4
В) 3,3
Г) 1,5
Д) 2,3
ОТВЕТ Г) 1,5

25.

Упражнение 5.
Запишите предикат (условие, которое может быть и сложным),
полностью описывающий область, нестрого заключенную между
окружностью с центром в начале координат и радиусом 2 и
квадратом, в который вписана эта окружность.
Уравнение окружности имеет вид: x 2 y 2 4
Уравнения квадрата: x 2
y 2
Искомая область образуется пересечением внешней области
окружности, и внутренней области квадрата
Таким образом, ответ: (x 2 y 2 4) & (x 2) & (y 2)

26.

Самостоятельно
Для более подробного изучения материала
самостоятельно читаем:
УЧЕБНИК: «Математическая логика и теория
алгоритмов»,
автор Игошин В.И.
Страницы 146-156

С помощью логических операций отрицания, конъюнкции, дизъюнкции, импликации и эквивалентности из исходных предикатов могут быть построены новые предикаты.

Отрицание предиката . Пусть предикат P(x 1 , x 2 , ..., x n) задан на множествах M 1 , M 2 , ..., M n . Предикат R(x 1 , x 2 ,..., x n) называется отрицанием предиката P(x 1 , x 2 , ..., x n) тогда и только тогда, если при одних и тех же кортежах (a 1 , a 2 , ... , a n), где а 1 M 1 , а 2 M 2 , ..., аn M n , высказывание P(a 1 , a 2 , ..., a n) истинно, когда R(a 1 , a 2 , ..., a n) - ложно и наоборот. Обозначение

R(x 1 , x 2 , ..., x n) ù P(x 1 , x 2 , ..., x n)

Например, предикат "n - четное число" есть отрицание предиката "n - нечетное число" на множестве целых чисел.

Конъюнкция предикатов . Пусть на множествах M 1 , M 2 , ..., M n заданы два n - местных предиката P(x 1 , x 2 , ..., x n) и R(x 1 , x 2 , ..., x n). Конъюнкцией этих предикатов называется предикат

Q(x 1 , x 2 , ..., x n) P(x 1 , x 2 , ..., x n) R(x 1 , x 2 , ..., x n),

который истинен для одних и тех же кортежей только тогда, когда оба предиката и P(x 1 , x 2 , ..., x n) и Q(x 1 , x 2 , ..., x n) истинны.

Например, конъюнкция предикатов "x 2 + y 2 1" и "x 0", где x, y - вещественные числа определяет предикат "точки правой половины единичного круга" (см. рис.2.2).

Дизъюнкция предикатов P(x 1 , x 2 , ..., x n) и R(x 1 , x 2 , ..., x n), есть новый предикат S(x 1 , x 2 , ..., x n) = P(x 1 , x 2 , ..., x n) R(x 1 , x 2 , ..., x n), который имеет значение "ложь" для тех и только тех кортежей из M 1 M 2 ... M n , для которых оба предиката и P(x 1 , x 2 , ..., x n) и R(x 1 , x 2 , ..., x n) имеют значение "ложь". На рис.2.3 иллюстрируется дизъюнкция предиката "x 2 + y 2 1" и "x 0" - (заштрихованная область).

Импликация предикатов P(x 1 , x 2 , ..., x n) и R(x 1 , x 2 , ..., x n), есть новый предикат T(x 1 , x 2 , ..., x n) = P(x 1 , x 2 , ..., x n) R(x 1 , x 2 , ..., x n), который имеет значение "ложь" для тех и только тех кортежей из M 1 M 2 ... M n , для которых предикат P(x 1 , x 2 , ..., x n) имеет значение "истина", а предикат R(x 1 , x 2 , ..., x n) имеет значение "ложь". Например, импликация "n делится на 4" " n делится на 2" есть предикат: "если n делится на 4, то n делится на 2".

Эквивалентность предикатов P(x 1 , x 2 , ..., x n) и R(x 1 , x 2 , ..., x n), есть новый предикат V(x 1 , x 2 , ..., x n) = P(x 1 , x 2 , ..., x n) R(x 1 , x 2 , ..., x n), который имеет значение "истина" для тех и только тех кортежей из M 1 M 2 ... M n , для которых предикат P(x 1 , x 2 , ..., x n) и предикат R(x 1 , x 2 , ..., x n) имеют одинаковые значение или оба "истина" или оба "ложь". Два предиката заданных на одних и тех же множествах называются равносильными , если при всех наборах входящих в них предметных переменных эти предикаты принимают одинаковые значения. Равносильность называют также логической эквивалентностью . Например, эквивалентность предикатов P(n) = "n делится на 6" и R(n) = "n делится на 2 и n делится на 3" есть предикат V(n) = P(n) R(n): "если n делится на 6, то n делится на 2 и на 3". Предикаты P(n) и R(n) логически эквивалентны.



Наряду с логическими операциями важную роль играют операции, называемые кванторами.

Квантор всеобщности есть операция, которая предикат P(x) превращает в высказывание: "все x обладают свойством P(x)". Знак квантора всеобщности " ". Он заменяет фразы: "для всех", "каждый", "любой" и т.п. Обозначение x: P(x) читается так: "для всех x таких, что P от x". Например, “P(x) = x>0 , где x - вещественное число”, есть предикат "x - положительное число". Тогда x: P(x) есть высказывание "каждое число - положительно". Это ложное высказывание. Если же x - любое натуральное число (x N), то x: P(x) есть выражение: "каждое натуральное число - положительно" - истинное высказывание.

Квантор всеобщности можно рассматривать как обобщение серии конъюнкций единичных высказываний. Пусть M - множество очков, которое может выпасть при бросании игральной кости, т.е. M ={1,2,3,4,5,6} и P(x) - предикат: "при бросании игральной кости один раз выпадает x очков", где x M. Применение квантора всеобщности позволяет вместо сложного высказывания P(1) P(2) P(3) P(4) P(5) P(6) записать равносильное ему компактное высказывание x: P(x), x M: "при бросании игральной кости один раз может выпасть любое из шести первых натуральных чисел".



Квантор существования есть операция, которая предикат P(x) превращает в высказывание: "существует хотя бы один x из M, обладающий свойством P(x)". Знак квантора существования " ". Он заменяет фразы: "существует, хотя бы один", "найдется", "некоторый" и т.п. Обозначение x: P(x) читается так: "существует хотя бы один x такой, что P от x". Например, P(x) - предикат: "x - студент", где x - элемент множества жителей Москвы. Тогда выражение x: P(x) есть высказывание "хотя бы один житель Москвы является студентом".

Квантор существования можно рассматривать как обобщение серии дизъюнкций единичных высказываний. Если задано множество M={a 1 , a 2 , ..., a n } и на нем определен предикат P(x), то

P(а 1) P(а 2) ... P(а n) ( x M): P(x).

Кванторы обладают свойствами, являющимися аналогами законов де Моргана:

ù( x: P(х)) х:ù P(х),

ù( х: P(х)) х: ùP(х).

С помощью кванторов можно выражать ряд часто используемых на практике отношений между множествами. Например, высказывание "все объекты х из данного множества, обладающие свойством P(х), обладают также и свойством R(х)" формально можно записать так; х: (P(х) R(х)).

Переход от P(х) к х:P(х) или х:P(х) называется квантификацией или связыванием переменнойх . Связанная переменная фактически не является переменной, т.е. переход от х: P(х) к y:P(y) или от х:P(х) к y: P(y) не меняет истинности выражений. Навешивание переменной на многоместный предикат уменьшает в нем число свободных переменных и превращает его в предикат от меньшего числа переменных.

Рассмотрим пример. На множестве чисел задан двухместный предикат P(х,y)="число х делится на число y". Связывая одну переменную, можно получить следующие одноместные предикаты:

Х: P(х,y) = "каждое число делится на y" - ложь;

X: P(x,y) = "существует число, которое делится на y"- истина;

Y: P(х,y) = "число х делится на любое число" - ложь;

Y: P(х,y) = "существует число на которое делится х" - истина.

Связывая обе переменные данного предиката, получим высказывания:

Х, y:P(х,y)="каждое число делится на любое число" - ложное высказывание,

Х, y:P(х,y)="существует число, на которое делится любое число" - истина, т.к. такое число есть 1,

Х, y:P(х,y)="существует число, которое делится на любое число" - ложное высказывание,

Х, y: P(х,y)="существует число, которое делится на какое-нибудь число" - истинное высказывание.

Неформально предикат можно определить как некоторое высказывание, значение которого зависит от значений предметных переменных из множества M , на котором определен предикат.

a) P(x) : “x есть простое число”;

(Здесь и всюду в дальнейшем для задания предиката будем использовать краткую форму записи, которая подробно расписывается следующим образом: “x есть простое число”.)

b) D(x,y) : “x нацело делится на y ”;

c) R(x,y) : “x > y ”.

В качестве предметного множества для этих примеров можно рассматривать любые числовые множества, в частности, в примерах a), b) – M = Í , а в c) – M = Ñ .

Более строго предикат можно определить как отображение n -ной степени множества M , называемой местностью или арностью предиката в двухэлементное множество B = {1, 0}

При подстановке в предикат вместо предметных переменных набора значений получим логическое высказывание (так , а ). Таким образом, предикат представляет собой переменное высказывание (или систему высказываний), истинность которого определяется подстановкой различных значений предметных переменных.

Так как предикаты принимают значения из множества B , то для них определены логические операции ~. Кроме того, для предикатов вводятся операции утверждения всеобщности и утверждения существования.

Операция утверждение всеобщности ставит в соответствие высказывательной форме P(x) высказывание (читается как, P(x) истинно для всех x из множества M , на котором определен предикат). Высказывание истинно тогда и только тогда, когда высказывание P(a) истинно для любого элемента .

Операция утверждение существования ставит в соответствие высказывательной форме P(x) высказывание (читается как, существует такой x из множества M , для которого высказывание P(x) истинно). Высказывание истинно тогда и только тогда, когда высказывание P(a) истинно хотя бы для одного элемента .

Знаки " и $ называются кванторами всеобщности и существование (квантор в переводе с латинского – определение количества). Переход от высказывательной формы P(x) к высказываниям или называется навешиванием квантора или связыванием переменной x (иногда – квантификацией переменной x ). Переменная, на которую навешен квантор, называется связанной, несвязанная переменная называется свободной. Смысл связанных и свободных переменных в предикатных выражениях различен. Свободная переменная – это обычная переменная, которая может принимать различные значения из M , а выражение P(x) – переменное высказывание, зависящее от значения x . Выражения и не зависят от переменной x и при фиксированных P и M имеют вполне определенное значение. Переменные, являющиеся по существу связанными, встречаются не только в математической логике. Например, в выражениях или переменная x связана, при фиксированной f первое выражение равно определенному числу, а второе является функцией от a и b .

Таким образом, в высказываниях и говорится не о свойствах отдельных элементов множества M , а о свойствах самого множества M . Истинность или ложность этих высказываний не зависит от того, как обозначена предметная переменная, входящая в них, и ее можно заменить любой другой предметной переменной, например y , и получить высказывания и , имеющие тот же самый смысл и те же самые значения истинности, что и исходные высказывания.

В общем случае для n -арного предиката, если , операции утверждения всеобщности или существования можно выполнять k раз (порядок выбора переменных, по которым происходит навешивание квантора, может быть любым, исключая их повторение) и получить выражение

где обозначает квантор всеобщности или существования. Переменные в высказывательной форме (1) являются связанными, а – свободными.

Рассмотрим выражение «х –– простое число». Подставляя вместо х числа 3, 4, получаем высказывания, причем в первом случае оно будет истинным, а во втором –– ложным. Таким образом, каждому натуральному числу соответствует значение «И» и «Л» в зависимости от того, является оно простым или нет.

Следовательно, выражение «х –– простое число» определяет функцию одной переменной (одноместную), заданную на множестве натуральных чисел со значениями в множестве {И, Л}.

Аналогично, подставляя в выражение «х Подобным образом выражение «х и у –– родители z» определяет функцию трех переменных (трехместную) на множестве людей со значениями в множестве {И, Л}. Выражение х1 + х2 + … + хn = 0 определяет функцию n переменных (n–местную), заданную на множестве действительных чисел со значениями в множестве {И, Л}:

Такие функции называются предикатами.

Определение 1. n–местным предикатом на множестве М называется n–местная функция, аргументы которой принимают значения из множества М, а область значений есть множество {И, Л}.

Короче, n–местным предикатом на множестве М называется функция типа Мп→{И, Л}.

Для обозначения предикатов используют либо большие латинские буквы, либо символы: А(х, у), В(х), Р(х1, х2,…, хn) и т.д. (к предикантным символам А, В, Р добавляют в скобках символы переменных, от которых зависят данные предикаты). При этом, например, выражение А(10, 8) служит для обозначения (постоянного) высказывания, которое получается, если переменным х, и у предиката А(х, у) придать соответственно значения 10 и 8. Некоторые предикаты записывают с помощью тех или иных знаков, имеющих в теории определенный смысл, например: х = у, х > у, х + у = z и т.д.

При n = 1 n–местный предикат называют унарным, при n = 2 –– бинарным, а при n = 3 –– тернарным.

Определение 2. Пусть Р(х1, х2,…, хn) –– n–местный предикат, определенный на множестве М. Множеством истинности этого предиката называется совокупность таких упорядоченных n–ок (х1, …, хn), для которых Р(х1, х2,…, хn) принимает значение И.

Определение 3. Два предиката Р(х1, …, хn) и Q(х1, …, хn), определенные на одном и том же множестве М, называются равносильными на множестве М, если они принимают одинаковые значения И или Л при любых значениях х1, …, хn из множества М.

Таким образом, два предиката Р(х1, …, хn) и Q(х1, …, хn) на множестве М называются равносильными на множестве М, если множества истинности этих предикатов совпадают.

Определение 4. Предикат Р(х1, …, хn), определенный на множестве М, называется тождественно–истинным (тождественно–ложным) на М, если при подстановке вместо х1, …, хn любых элементов из множества М он принимает значение И (Л), т.е. множество истинности этого предиката Мn (пустое).

Предикаты, как и высказывания, принимают значения И и Л, поэтому над ними можно производить логические операции, аналогичные операциям логики высказываний.

Пример. Пусть Р(х) и Q(х) –– два одноместных предиката, определенных на множестве М. Тогда Р(х) Ù Q(х) –– предикат на множестве М. Он является истинным для тех и только тех элементов из М, для которых оба предиката Р(х) и Q(х) истинны, т.е. множество истинности предиката Р(х) Ù Q(х) равно пересечению множеств истинности предикатов Р(х) и Q(х).

Аналогично определяется Р(х) U Q(х). Предикат Р(х) U Q(х) задан на том же множестве М и является истинным для тех и только тех элементов х из М, для которых истинен хотя бы один из предикатов Р(х) и Q(х), т.е. множество истинности предиката Р(х) U Q(х) равна объединению множеств истинности предикатов Р(х) и Q(х).

Предикат определен на множестве М и истинен для тех и только тех элементов х из М, для которых Р(х) ложен. Другими словами, множество истинности предиката –– дополнение в М множества истинности предиката Р(х).

Подобным образом вводятся предикаты Р(х) ? Q(х), Р(х) Û Q(х).

Операции логики высказываний над многоместными предикатами определяются аналогично. Необходимо только следить за тем, какие переменные обозначены одинаковыми буквами, а какие –– различными. Поясним это на примерах.

Пусть Р(х, у) и Q(х, у) –– два двухместных предиката, определенных на множестве М. Тогда Р(х, у) Ù Q(y, z) –– трехместный предикат на множестве М, он принимает значение И для тех и только тех упорядоченных троек (х, у, z) множества М, для которых Р(х, у) и Q(y, z) одновременно принимают значения И.

Отметим еще, что Р(х, у) Ù Q(х, у) –– двухместный, а Р(х, у) Ù Q(z, v) –– четырехместный предикаты, определенные на множестве М.

Если Р(х) и Q(х) –– два одноместных предиката, то не следует смешивать предикаты Р(х) Ù Q(х) и Р(х) Ù Q(у). Первый из них –– одноместный, а второй –– двухместный предикаты.

Рассмотрим ещё ряд операции в логике предикатов, которые называются кванторами, и делают логику предикатов более богатой, чем логика высказываний.

Определение 5. Пусть Р(х) –– одноместный предикат, определенный на множестве М. Символом обозначим высказывание, которое истинно, если Р(х) принимает значение И для любого элемента х множества М, и ложное в противоположном случае, т. е. –– истинное высказывание, если множество истинности предиката Р(х) совпадает со всем множеством М (Р(х) –– предикат, тождественно–истинный на множестве М); в противоположном случае –– ложное высказывание.

Часть в выражении называется квантором общности (всеобщности). Выражение читается «для любого х Р(х)». Символ –– перевернутая первая буква слова all (англ.), allе (нем.).

Пусть Р(х) –– предикат «х –– простое число», определенный на множестве натуральных чисел. Тогда высказывание (х –– простое число) ложно на множестве натуральных чисел. Это же высказывание (х –– простое число) истинно на множестве простых чисел.

Определение 6. Пусть Р(х) –– одноместный предикат, определенный на множестве М. Символом $ обозначим высказывание, которое истинно, когда в множестве М существует такой элемент х0, что Р(х0) = И, и ложно в противоположном случае, т. е. $ –– истинное высказывание, если множество истинности предиката Р(х) непустое; в противном случае $ –– ложное высказывание.

Выражение $ читается «существует х такое, что Р(х)», а часть $х в выражении $ называют квантором существования. Например, высказывание $х (х –– простое число) на множестве натуральных чисел истинно, высказывание $ на множестве действительных чисел ложно.

Символ $ –– перевернутая первая буква слова exist (англ.), existieren (нем.), exister (фр.).

Замечание 1. Применение квантора превращает одноместные предикаты в высказывания (не зависящие от х). Совершенно аналогично применяются кванторы к любому предикату с большим числом переменных. В результате применения квантора к n –– местному предикату (при n > 0) получается (n – 1) –– местный предикат.

Замечание 2. К одному и тому же предикату можно применять кванторы несколько раз. Например, применив к предикату Р(х, у) квантор существования по х, мы получим одноместный предикат $, к которому опять можем применить квантор существования или квантор общности по переменной у. В результате получим высказывание

$у($ или у($.

Скобки обычно опускают, получая при этом выражения

$у$ или у$.

Замечание 3. Одинаковые кванторы можно переставлять, получая при этом эквивалентные высказывания, т.е. истинные эквиваленции.

ОПРЕДЕЛЕНИЕ 5. ДИЗЪЮНКЦИЕЙ предикатов, заданных на множестве Х, называется предикат А(х) В(х), обращающийся в истинное высказывание при тех и только тех значениях х из множества Х (х Х), при которых хотя бы один из предикатов А(х) и В(х) обращается в истинное высказывание.

Width:="" auto="">

Можно заметить, что множеством истинности дизъюнкции предикатов является объединение множеств ТА и Т В, т. е. Т А В =ТА ТВ. Докажем это предположение.

1). Сначала докажем, что множество Т А В является подмножеством множества ТА ТВ (Т А В ТА ТВ). Пусть x = a – произвольный элемент из множества ТА В, т. е. а ТА В. Следовательно, А(а) В(а) – «и» высказывания. По определению, А(а) В(а) – «и» только тогда, когда А(а) – «и» или В(а) – «и. »

Если А(а) – и, то а ТА, если В(а) - и, то а ТВ. Т. к. А(а) В(а) – и, то а ТА или а ТВ –, это значит, что а ТА ТВ. а - произвольный элемент из ТА В, следовательно, все элементы множества ТА В принадлежат множеству ТА ТВ, т. е. ТА В ТА ТВ, ч. т. д.

2). Докажем, что множество ТА ТВ является подмножеством множества Т А В (ТА ТВ Т А В). Пусть х = в – произвольный элемент из ТА ТВ, в ТА ТВ, по определению, в ТА или в ТВ А(в) – «и» или В(в)- «и» А(в) В В(в)- «и» в ТА В.

Следовательно, если в ТА ТВ, то в ТА В. т. к. Т. К. в – произвольный элемент из ТА ТВ, то ТА ТВ Т А В, ч. т. д.

Из пунктов 1 и 2 по определению равных множеств следует справедливость равенства Т А В = ТА ТВ Заметим, что полученное правило справедливо и для предикатов, содержащих более одной переменной.

ПРИМЕР. Предикаты: А(х)- «х-делитель числа 15» и В(х) - «х –делитель числа 16» . Множество истинности А(х)- ТА ={1, 3, 5, 15 }, множество истинности В(х) -ТВ ={1, 2, 4, 8, 16}. Множество истинности дизъюнкции предикатов Т А В = {1, 2, 3, 4, 5, 8, 15, 16}.

ОПРЕДЕЛЕНИЕ 6. ОТРИЦАНИЕМ предиката А(х), заданного на множестве Х, называется предикат А(х) (« не А(х) »), определенный на том же множестве и истинный при тех и только тех значениях переменной х из множества Х (х Х), при которых предикат А(х) обращается в ложное высказывание.

ПРИМЕР. Предикат А(х)- « х - четное число » . Отрицание предиката: А(х) «х - нечетное число» . Пусть область определения предиката А(х) - Х={х, х N, х

Множество истинности предиката А(х) - все нечетные числа, меньшие 10: ТА = {1, 3, 5, 7, 9}. Из примера видно, что ТА = Х ТА = ТА т. е. множество истинности предиката « не А(х) » является дополнением к множеству истинности предиката А(х). Х = ТА

КВАНТОР – общее название для логических операций, которые по предикату Р(х) строят высказывание, характеризующее область истинности предиката Р(х). В математической логике наиболее употребительны квантор всеобщности (х), квантор существования (х) и квантор единственности существования (! х).

Выражение «для всех х» («для любого х» , «для каждого х») называется квантором общности и обозначается х. Выражение «существует такое х» («для некоторых х» , «хотя бы для одного х» , «найдется такое х») называется квантором существования и обозначается х.

Высказывание, полученное из предиката Р(х) при помощи квантора общности, записывается в виде (х Х) Р(х) Высказывание, полученное из предиката Р(х) при помощи квантора существования, записывается в виде (х Х) Р(х) Высказывание «существует одно и только одно х X, для которого истинно Р(х) обозначают (!х X) Р(х)

Для того чтобы получить высказывание из многоместного предиката надо связать кванторами каждую переменную. Например, если Р (х, у) – двухместный предикат, то (х Х)(у Y) Р(х, у) – высказывание. ПРИМЕР. Задан предикат Р(х, у): «х>у» . Для получения высказывания надо связать кванторами обе переменные: например, (Х)(у) х>у или (у)(х) х>у.

ОПРЕДЕЛЕНИЕ ИСТИННОСТИ ВЫСКАЗЫВАНИЯ С КВАНТОРАМИ ИСТИННОСТЬ высказывания с квантором общности устанавливается путем доказательства. Чтобы убедиться в ложности таких высказываний (опровергнуть их) достаточно привести контрпример. .

Истинность высказывания с квантором существования устанавливается при помощи конкретного примера. Для опровержения такого высказывания необходимо провести доказательство. Для чего нужны кванторы?

ВЫВОД. ПРЕДИКАТ обращается в ВЫСКАЗЫВАНИЕ двумя способами: 1). По определению, подставив вместо переменных их конкретные значения из области определения предиката; 2). Связать кванторами переменные, содержащиеся в предикате. Если предикат содержит несколько переменных, необходимо связать квантором каждую переменную.

ПРИМЕР. Пусть дано высказывание А: « Любые четные числа кратны 3» . Высказывание А: « Не любые четные числа кратны 3» или высказывание А: «Неверно, что любые четные числа кратны 3» , другими словами это можно сказать так: «существуют (есть) четные числа не кратные 3» . 8, 10, …

Для построения отрицания высказываний с кванторами надо: 1) квантор общности заменить на квантор существования, а квантор существования на квантор общности; 2) предложение, стоящее после квантора, заменить его отрицанием. (х Х) А(х) = (х Х) А (х) (х Х) А(х) = (х Х)А (х). Таким образом, получаем две равносильности. Или перед данным высказыванием ставят слова: «неверно, что» .

Это правило сохраняется и в том случае, если высказывание содержит не один, а несколько кванторов, например: (х Х)(х Y) А(х, y) = (х Х) (х Y) А (х, y) Для построения отрицания полезны следующие формулы: А(х) В(х) = А(х) В(х) , А(х) В(х)=А(х) В(х)

Рассмотрим два предиката А (х) и В (х). Пусть А (х) – «х: 6» ; В (х) – «х: 3» . Образуем импликацию предикатов «Если х: 6, то х: 3» . Множества истинности предикатов А(х) – ТА= {6, 12, 18, …}; В(х) – ТВ = {3, 6, 9, 12, 15, 18, … }. Из того, что «х: 6» всегда следует, что «х: 3» .

В этом случае говорят, что предикат В(х) логически следует из предиката А(х), а предикаты А(х) и В(х) находятся в отношении логического следования.

В этом случае множество истинности импликации таких предикатов совпадает с ее областью определения Т А В = Х. Отношение логического следования обозначается всегда А(х) => В (х).

Предикат А(х) называют достаточным условием для В(х), а предикат В(х) называют необходимым условием для предиката А(х). Это возможно тогда и только тогда, когда ТА ТВ. .

Src="https://present5.com/presentation/3/-42558499_158059721.pdf-img/-42558499_158059721.pdf-32.jpg" alt="Пример. Предложение «х: 6» => «х: 3» в этом случае читают так: чтобы «х:"> Пример. Предложение «х: 6» => «х: 3» в этом случае читают так: чтобы «х: 3» – достаточно, чтобы «х: 6» , а чтобы «х: 6» необходимо, чтобы «х: 3» .

Src="https://present5.com/presentation/3/-42558499_158059721.pdf-img/-42558499_158059721.pdf-33.jpg" alt="Логическое следование: достат. необход. А(х) => B(x), TА ТВ "> Логическое следование: достат. необход. А(х) => B(x), TА ТВ

Src="https://present5.com/presentation/3/-42558499_158059721.pdf-img/-42558499_158059721.pdf-34.jpg" alt="Пример: Предложение «х: 4» => «х: 2» в этом случае читают так: чтобы «х:"> Пример: Предложение «х: 4» => «х: 2» в этом случае читают так: чтобы «х: 2» – достаточно, чтобы «х: 4» , а для того чтобы «х: 4» необходимо, чтобы «х: 2» .

Если из А(х) следует В(х) и из В(х) следует А(х), то предикаты А(х) и В(х) называют равносильными или эквивалентными и записывают А(х) В(х). Это возможно тогда и только тогда, когда ТА= ТВ.

В этом случае А(х) является необходимым и достаточным условием для В(х), а В(х) – необходимым и достаточным условием для А(х). При этом А(х) => В(х) и В(х) =>А (х). ПРИМЕР. А(х)- «число х делится на 9» , В(х)- «сумма цифр числа х делится на 9» . А(х) В(х)

Теорема –это предложение (утверждение), истинность которого может быть доказана. Теоремы часто формулируются в виде импликаций: если А(х), то В(х) для каждого х, т. е. (х х)А(х) => В(х).

Src="https://present5.com/presentation/3/-42558499_158059721.pdf-img/-42558499_158059721.pdf-39.jpg" alt="(х х)А(х) => В(х). Чаще всего ее записывают так А => В (1)"> (х х)А(х) => В(х). Чаще всего ее записывают так А => В (1) Для всякой теоремы (1) можно сформулировать предложение: «Если В, то А» - обратное данному. Но не всегда это предложение является теоремой.

Пример. «Если углы вертикальные, то они равные» . Обратное предложение: « Если углы равны, то они вертикальные» . или «Если четырехугольник – прямоугольник, то в нем диагонали равны» . Обратное: не верно. Какой пример?

Но если обратное предложение – истинно, то оно наз. обратной теоремой. Например: Т 1: « Если треугольник прямоуг. , то квадрат гипотенузы равен сумме квадратов катетов» Обратное: « Если в треугольнике квадрат одной стороны равен сумме квадратов двух других, то треуг. – прямоуг. » Это -истина, поэтому оно наз. Теоремой, обратной данной.

Если в теореме Для всякой теоремы « Если А, то В» можно сформулировать предложение: « Если не А, то не В» . (если А, то В) Это предложение наз. Противоположным данному. Всегда ли оно будет теоремой? Пример. В том случае, если предложение является теоремой, то его наз. теоремой, противоположной данной. Если

Итак, если для теоремы «Если А, то В» сформулировать предложение, обратное или противоположное ей, то их надо доказывать и только тогда они будут наз. теоремой, обратной или противоположной данной. , если их истинность будет доказана

Для всякой теоремы « Если А, то В» можно сформулировать предложение « Если не В, то не А» «Если В, то А» - обратным противоположному. «Если углы -вертикальные, то они равны» и « если углы не равны, то они и не вертикальные» . Эти предложения всегда истинны, т. е всегда теорема. (А В В А). Эту равносильность наз. законом контрапозиции

Примеры: 1. Если четырехугольник – ромб, то его диагонали взаимно перпедикулярны. 2. Если каждое слагаемое - четное число, то и сумма - четная.

Это предложение наз. Противоположным данному. Всегда ли оно будет теоремой? Пример. В том случае, если предложение является теоремой, то его наз. теоремой, противоположной данной. Итак, если для теоремы «Если А, то В» сформулировать предложение, обратное или противоположное ей, то их надо доказывать и только тогда они будут наз. теоремой, обратной или противоположной данной.