Первое начало термодинамики процессы. Основы термодинамики. Примеры решения задач

Первое начало термодинамики процессы. Основы термодинамики. Примеры решения задач

Работа, совершаемая произвольной массой m идеального газа при адиабатическом расширении:

.

Политропическим называют процесс, при котором p и V связаны следующими соотношениями:

где n - показатель политропы, принимающий любые значения от -¥ до +¥.

Работа, совершаемая идеальным газом при политропическом процессе:

Обратимый процесс - это процесс, который протекает так, что после его окончания систему можно вернуть в первоначальное состояние, причем никаких изменений в окружающей систему среде не произойдет.

Необратимый процесс - это процесс, протекающий так, что после его окончания систему нельзя вернуть в первоначальное состояние без изменений в окружающей среде.

Круговой процесс (цикл) - это такая последовательность превращений, в результате которой система, выйдя из какого-либо исходного состояния, возвращается в него вновь.

Любой круговой процесс состоит из процессов расширения и сжатия . Процесс расширения сопровождается работой, совершаемой системой, а процесс сжатия - работой, совершаемой над системой внешними силами. Разность этих работ равна работе данного цикла.

Если работа при расширении больше, чем работа при сжатии, то такой процесс (цикл) называется прямым. В противном случае - обратным.

Коэффициент полезного действия при круговых процессах (характеристика эффективности цикла) - физическая величина, равная отношению работы цикла к работе, которую можно было бы совершить при превращении в нее всего количества тепла, подведенного к системе:

Цикл Карно состоит из двух изотермических и двух адиабатических процессов.

Коэффициент полезного действия цикла Карно (КПД )

КПД цикла Карно не зависит от природы вещества, а зависит лишь от температур, при которых теплота сообщается системе и отбирается от нее.

Коэффициент полезного действия холодильной машины (холодильника )

Примечание . Кроме цикла Карно в технической термодинамике применяются цикл Отто, состоящий из двух адиабатических и двух изохорических процессов, и цикл Дизеля, состоящий из двух адиабатических, изохорического и изобарического процессов.

Энтропия - физическая величина, элементарное изменение которой при переходе системы из одного состояния в другое равно полученному или отданному количеству теплоты, деленному на температуру, при которой произошел этот процесс:

Связь энтропии системы с термодинамической вероятностью (соотношение Больцмана):

где k - постоянная Больцмана.

Изменение энтропии системы при переходе из одного состояния в другое:

,

Изменение энтропии системы при изотермическом процессе:

.

Изменение энтропии системы при изобарическом процессе:

Изменение энтропии системы при изохорическом процессе:

.

Изменение энтропии системы при адиабатическом процессе:

DS = 0, .

Изменение энтропии системы, совершающей цикл Карно:

где DS р - изменение энтропии рабочего тела;

DS н, DS х - изменение энтропии нагревателя и холодильника;

DS пр - изменение энтропии «потребителя работы».

В случае совершения системой обратимого цикла Карно энтропия замкнутой системы не изменяется:

DS обр = 0, или S обр = const.

В случае совершения системой необратимого цикла Карно энтропия замкнутой системы возрастает:

DS > 0; ; .

Для произвольных процессов, происходящих в замкнутой системе, энтропия системы для любых, происходящих в ней процессах, не может убывать:

DS ³ 0 или ,

где знак «равенства» справедлив для обратимых процессов, а знак «неравенства» - для необратимых.

Второе начало термодинамики : «В изолированной системе возможны только такие процессы, при которых энтропия системы возрастает или невозможен процесс, единственным результатом которого является превращение в работу теплоты, полученной от нагревателя »:

Термодинамические потенциалы - определенные функции объема V, давления p, температуры T, энтропии S, числа частиц системы N и других макроскопических параметров x, характеризующих состояние термодинамической системы:

а) внутренняя энергия - энергия системы, зависящая от ее внутреннего состояния. Она является однозначной функцией независимых переменных, определяющих это состояние, например температуры T и объема V (или давления p):

U = U (S, V, N, x).

Изменение внутренней энергии системы DU определяется лишь ее значениями в начальном и конечном состояниях:

;

б) энтальпия (теплосодержание ) характеризует состояние макроскопической системы в термодинамическом равновесии при выборе в качестве основных независимых переменных энтропии S и давления p:

H = H (S, p, N, x).

Энтальпия системы равна сумме энтальпий составляющих ее частей.

Связь энтальпии с внутренней энергией U системы:

где V - объем системы.

Полный дифференциал энтальпии (при неизменных N и x ) имеет вид

.

Связь энтальпии с температурой, объемом и теплоемкостью (при постоянном давлении ) системы :

; ; C p = (dH/dt).

Изменение энтальпии (DH) равно количеству теплоты, которое сообщают системе или отводят от нее при постоянном давлении, поэтому значения H характеризуют тепловые эффекты фазовых переходов (плавления, кипения и т. д.), химических реакций и других процессов, протекающих при постоянном давлении;

в) свободная энергия - одно из названий изохорно-изотермического термодинамического потенциала или Гельмгольца энергии. Представляет собой ту часть внутренней энергии системы, которая превращается во внешнюю работу при обратимых изотермических процессах F = F(V, T, N, x):

где TS - связанная энергия.

Связанная энергия представляет собой ту часть внутренней энергии, которая не может быть передана в виде работы при изотермическом процессе:

Изменение (уменьшение ) свободной энергии при необратимых изотермических процессах определяет наибольшую величину работы, которую может совершить система:

; ;

г) энергия Гиббса - изобарно-изотермический потенциал, свободная энтальпия, характеристическая функция термодинамической системы при независимых параметрах p, T и N - G. В изотермически равновесном процессе, при постоянном давлении, убыль энергии Гиббса системы равна полной работе системы за вычетом работы против внешнего давления (т.е. равна максимальному значению «полезной» работы):

G = G (p, T, N, x); .

Связь энергии Гиббса со свободной энергией:

д) химический потенциал - физическая величина, равная энергии Гиббса отдельно взятой частицы.

Третье начало термодинамики (теорема Нернста): «Изменение энтропии системы (DS) при любых обратимых изотермических процессах, совершаемых между двумя равновесными состояниями при температурах, приближающихся к абсолютному нулю, стремится к нулю. При помощи последовательности термодинамических процессов нельзя достичь температуры, равной абсолютному нулю »:

Термодинамика неравновесных процессов - общая теория макроскопического описания неравновесных процессов. Основная задача термодинамики неравновесных процессов - количественное изучение этих процессов для состояний, не сильно отличающихся от равновесного состояния.

Закон сохранения массы:

,

где r - плотность многокомпонентной системы;

v - гидродинамическая скорость среды (средняя скорость переноса массы), зависящая от координат и времени;

rv - поток массы.

Закон сохранения массы для концентрации какого-либо компонента :

,

где c k - концентрация компонента;

r k - плотность компонента;

r - плотность среды;

J k = r k (v k - v) - диффузионный поток;

v k - гидродинамическая скорость (средняя скорость переноса массы) компонента.

Закон сохранения импульса: изменение импульса элементарного объема может происходить за счет сил, вызванных градиентом внутренних напряжений в среде P a , b , и внешних сил F k .

Закон сохранения энергии представляет собой первое начало термодинамики в термодинамике неравновесных процессов.

Уравнение баланса энтропии: «В термодинамике неравновесных процессов принимается, что энтропия элементарного объема является такой же функцией от внутренней энергии, удельного объема и концентрации, как и в состоянии полного равновесия »:

,

где s - скорость возрастания энтропии;

r - плотность вещества;

s - энтропия элементарного объема (локальная энтропия);

J s - плотность потока энтропии.

Такие физические процессы, как теплота и работа, можно объяснить простой передачи энергии от одного тела к другому. В случае с работой речь идет о механической энергии, теплота же предполагает энергию термическую. Передача энергии ведется по законам термодинамики. Главные положения этого раздела физики известны как «начала».

Первое начало термодинамики регулирует и ограничивает процесс передачи энергии в той или иной системе.

Виды энергетических систем

В физическом мире существует два типа энергетических систем. Замкнутая, или закрытая система имеет постоянную массу. В открытой, или незамкнутой системе масса может уменьшаться и увеличиваться в зависимости от процессов, протекающих в этой системе. Большинство наблюдаемых систем являются незамкнутыми.

Исследования в таких системах затруднено множеством случайных факторов, влияющих на достоверность результатов. Поэтому физики изучают явления в замкнутых системах, экстраполируя результаты на открытые, с учетом необходимых поправок.

Энергия изолированной системы

Любая замкнутая система, в которой отсутствует обмен энергией с окружающей средой, является изолированной. Равновесное состояние такой системы определяется показаниями таких величин:

  • P- давление в системе;
  • V - объем изолированной системы
  • T- температура;
  • n - число молей газа в системе;

как видно, количество тепла и выполненная работа не входят в этот перечень. Закрытая изолированная система не совершает теплообмен и не производит работу. Ее полная энергия остается неизменной.

Изменение энергии системы

При совершении работы или возникновении процесса теплообмена состояние системы изменяется, и изолированной она уже считаться не будет.

Формулировка первого начала термодинамики

Прежде всего первое начало термодинамики было выведено для изолированных систем. Позднее было доказано, что закон универсален, и его можно применять к незамкнутым системам, если правильно учитывать изменение внутренней энергии, происходящее из-за колебания количества вещества в системе. Если рассматриваемая система переходит из состояния А в состояние Б, то работа, совершенная системой W , и количество теплоты Q будут различаться. Различные процессы дают неодинаковые показания этих переменных даже в случае, если в конечном итоге система придет в первоначальное состояние. Но при этом разница W - Q будет всегда одна и та же. Иными словами, если после какого-либо воздействия система пришла в первоначальное состояние, то независимо от типа процессов, учувствовавших в преобразовании такой системы, соблюдается правило W - Q = const .

В некоторых случаях удобнее использовать дифференциальную формулу выражения первого закона. Он выглядит так:dU=dW-dQ

здесь dU - бесконечно малое изменение внутренней энергии

dW - величина, характеризующая бесконечно малую работу системы

dQ - бесконечно малое количество теплоты, переданное данной системе.

Энтальпия

Для более широкого применения первого закона термодинамики вводится понятие энтальпии.

Так называется общее количество полной энергии вещества и произведения объема и давления. Физическое выражение энтальпии можно представить такой формулой:

Абсолютное значение энтальпии представляет собой сумму энтальпий всех частей, из которых состоит система.


В количественном выражении эта величина не может быть определена. Физики оперируют лишь разностью энтальпий конечного и начального состояния системы. Ведь при любых расчетах изменения состояния системы выбирают определенный уровень, при котором потенциальная энергия равна нулю. Точно также поступают и при расчете энтальпии. Если применить понятие энтальпии, то первое начало термодинамики для изопроцессов будет выглядеть таким образом:dU=dW-dH

Энтальпия любой системы зависит от внутреннего строения веществ, которые составляют эту систему. Эти показатели, в свою очередь, зависят от строения вещества, его температуры, количества и давления. Для сложных веществ можно вычислить стандартную энтальпию образования, которая равна тому количеству теплоты, которое понадобится для образования моля вещества из простых составляющих. Как правило, величина стандартной энтальпии отрицательная, так как при синтезе сложных веществ в большинстве случаев выделяется теплота.

Первый закон термодинамики в адиабатических процессах

Применение первого начала термодинамики для изопроцессов можно рассмотреть графически. К примеру, рассмотрим адиабатический процесс, в котором количество теплоты в течение всего времени остается неизменным, то есть Q = const . Такой изопроцесс протекает в теплоизолированных системах, или за столь короткое время, что система не успевает совершить теплообмен с внешней средой. Медленное расширение газа на диаграмме "объем-давление" описывается такой кривой:

По графику можно обосновать применение первого начала термодинамики к изопроцессам. Поскольку изменения количества теплоты в адиабатическом процессе не происходит, изменение внутренней энергии равно количеству произведенной работы. dU = - dW

Отсюда следует, что внутренняя энергия системы убывает, и температура ее падает.

Примеры адиабатических процессов

Верно и обратное утверждение: понижение давления при отсутствии теплообмена резко повышает температуру системы. Приблизительно так расширяется газ в двигателях внутреннего сгорания. В двигателях Дизеля горючий газ сжимается в 15 раз. Кратковременное повышение температуры позволяет горючей смеси самостоятельно воспламениться.

Можно рассмотреть еще один пример адиабатического процесса - свободное расширение газов. Для этого рассмотрим такую установку, состоящую из двух емкостей:

В первой емкости имеется газ, во второй он отсутствует. Поворачивая кран, мы добьемся того, что газ заполнит весь отведенный ему объем. При достаточной изолированности системы температура газа останется неизменной. Поскольку газ не выполнял никакой работы, переменная dW = const . Выяснилось, что при прочих равных условиях температура газа при расширении понижается. Расширение газа происходит неравномерно, поэтому на диаграмме "давление-объем" этот процесс представлен быть не может.

Первое начало термодинамики является универсальным законом, применяющимся во всех обозримых процессах Вселенной. Глубокое понимание причин тех или иных превращений энергии позволяет понимать существующие физические явления и открывать новые законы.

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ И ЕГО ПРИМЕНЕНИЕ


Основные определения

Химическая термодинамика применяет положения и законы общей термодинамики к изучению химических явлений. Для вывода закономерностей химической термодинамики нужно знать начальное и конечное состояния системы, а также внешние условия, при которых протекает процесс (температура, давление и т. п.). Химическая термодинамика не позволяет делать какие-либо выводы о внутреннем строении вещества и механизме протекания процессов. В этом заключается ограниченность термодинамического метода.

В химической термодинамике применяются те же понятия, термины и величины, что и в общей термодинамике.

Системой называется отдельное тело или группа тел, находящихся во взаимодействии и условно обособленных от окружающей среды.

Изолированной системой называют такую систему, которая не обменивается теплотой и работой с окружающей средой, т. е. энергия и объем которой постоянны.

Состояние системы - совокупность физических и химических свойств, характеризующих эту систему.

Состояние термодинамической системы характеризуется термодинамическими параметрами. К термодинамическим параметрам относятся температура, давление, объем, концентрация и др.

Термодинамическим процессом называется всякое изменение в системе, связанное с изменением хотя бы одного из термодинамических параметров. Если изменение параметра зависит только от начального и конечного состояния и не зависит от пути процесса, то такой параметр называется функцией состояния.

Круговым процессом, или циклом, называется процесс, при котором термодинамическая система, выйдя из некоторого начального состояния и претерпев ряд изменений, возвращается в то же самое состояние; в этом процессе изменение любого параметра состояния равно нулю. В зависимости от условий протекания различают процессы: изобарный, изотермный, адиабатный, изохорный, изобарно-изотермный и др.

Внутренняя энергия, теплота и работа. Первое начало термодинамики

Движение является неотъемлемым свойством материи. Движение проявляется в разных формах, качественно отличающихся друг от друга, но взаимосвязанных между собой и превращающихся друг в друга. Мерой движения является энергия. В химической термодинамике важное значение имеет понятие внутренней энергии.

Внутренней энергией системы называется сумма потенциальной энергии взаимодействия всех частиц тела между собой и кинетической энергии их движения, т. е. внутренняя энергия системы складывается из энергии поступательного и вращательного движения молекул, энергии внутримолекулярного колебательного движения атомов и атомных групп, составляющих молекулы, энергии вращения электронов в атомах, энергии, заключающейся в ядрах атомов, энергии межмолекулярного взаимодействия и других видов энергии. Внутренняя энергия - это общий запас энергии системы за вычетом кинетической энергии системы в целом и ее потенциальной энергии положения. Абсолютная величина внутренней энергии тела неизвестна, но для применения химической термодинамики к изучению химических явлений важно знать только изменение внутренней энергии при переходе системы из одного состояния в другое.

Все изменения внутренней энергии при ее переходе от одного тела к другому можно разбить на две группы. В первую группу входит форма перехода энергии за счет хаотического столкновения молекул двух соприкасающихся тел. Мерой передаваемой таким способом энергии является теплота.

Во вторую группу входят многие формы перехода энергии при перемещении масс, состоящих из большого числа частиц, под действием каких-либо сил. Сюда относятся поднятие тел в поле тяготения, переход электричества от большего к меньшему потенциалу, расширение газа и т. п. Общей мерой передаваемой таким способом энергии является работа.

Во многих процессах передача внутренней энергии может осуществляться частично в виде теплоты и частично в виде работы. Таким образом, теплота и работа характеризуют качественно и количественно две различные формы передачи энергии от одного тела к другому; они измеряются в тех же единицах, что и энергия.

Работу или энергию любого вида можно представить как произведение двух факторов: фактора интенсивности на изменение фактора емкости, называемого также фактором экстенсивности (если фактор интенсивности остается постоянным во время процесса). Так, например, обычная механическая работа равна произведению приложенной силы на приращение пути. Если две системы могут взаимодействовать, то они образуют одну общую систему, причем фактор емкости новой системы равен сумме факторов емкости составляющих ее частей при условии, если факторы интенсивности обеих исходных систем одинаковы. Если факторы интенсивности исходных систем неодинаковы, то в общей системе начинается процесс, протекающий в сторону выравнивания факторов интенсивности за счет изменения соответствующих факторов емкости. Так, например, давления выравниваются за счет изменения объемов. Взаимосвязь между внутренней энергией, работой и теплотой устанавливается на основе первого начала термодинамики. Первое начало термодинамики представляет собой постулат, вытекающий из многовекового опыта человечества. Существует ряд формулировок первого начала термодинамики, которые равноценны друг другу и вытекают одна из другой. Если одну из них рассматривать как исходную, то другие получаются из нее как следствия.

Первое начало термодинамики непосредственно связано с законом сохранения энергии и утверждает, что в любой изолированной системе запас энергии остаётся постоянным. Отсюда следует закон эквивалентности различных форм энергии: разные формы энергии переходят друг в друга в строго эквивалентных количествах. Первое начало можно выразить и в такой форме: вечный двигатель первого рода невозможен, т. е. невозможно построить машину, которая давала бы механическую работу, не затрачивая на это соответствующего количества молекулярной энергии; или внутренняя энергия является функцией состояния, т. е. ее изменение не зависит от пути процесса, а зависит только от начального и конечного состояния системы.

Докажем, что внутренняя энергия является функцией состояния. Пусть при переходе системы из первого состояния во второе по одному пути изменение внутренней энергии равно ΔUа, а по другому пути - ΔUb,т. е. предположим вначале, что изменение внутренней энергии зависит от пути процесса. Если величины ΔUа и ΔUbразличны, то, изолируя систему и переходя из состояния 7 в состояние 2 одним путчем, а затем обратно из состояния 2 в состояние 1 другим путем, получали бы выигрыш или потерю энергии ΔUb-ΔUа-но по условию система изолированная, т. е. она не обменивается теплом и работой с окружающей средой и запас ее энергии согласно первому началу термодинамики должен быть постоянным. Таким образом, сделанное предположение ошибочно. Изменение внутренней энергии при переходе системы из состояния 1 в состояние 2 не зависит от пути процесса, т. е. внутренняя энергия является функцией состояния.

Изменение внутренней энергии ΔUсистемы может происходить за счет обмена теплотой Qи работой А с окружающей средой. Условились считать положительными величинами теплоту, полученную системой и работу, совершенную системой. Тогда из первого начале термодинамики следует что полученная системой извне теплота Qрасходуется на приращение внутренней энергии ΔUи работу А, совершенную системой, т, е.

Q = ΔU + A.(II, 1)


Уравнение (II, 1) представляет собой математическую формулировку первого начала термодинамики. Величины ΔU, Qи А в уравнении (II, 1) могут иметь как положительное, так и отрицательное значение в зависимости от характера процесса. Если, например, все три величины отрицательны, то это означает, что отданная системой внешней среде теплота равна убыли внутренней энергии плюс полученная системой работа.

В отличие от внутренней энергии, теплота Qи работа А не являются функциями состояния, они зависят от пути процесса. Разность их

Q- A= ΔU (II, 2)

от пути процесса не зависит. Для бесконечно малого изменения этих величин имеем

термодинамика эндотермический реакция

δQ = dU + δA,(II,3)

где dU- полный дифференциал внутренней энергии системы; δQ- бесконечно малое количество теплоты; δА - бесконечно малое количество работы.

Работа расширения идеального газа в разных процессах

Для многих систем единственный вид работы - работа расширения. Практическое значение имеет обычно работа расширения газа, причем многие газы при достаточно низких давлениях и сравнительно высоких температурах приближенно подчиняются законам идеальных газов. Рассмотрим математические соотношения для вычисления работы расширения идеального газа в разных процессах. При расширении газа совершается работа, которая вычисляется по уравнению


или в интегральной форме

,(11,6)

Интегрирование уравнения (II, 6) возможно только для процесса расширения или сжатия газа в условиях, близких к равновесным. Совершаемая при этом работа является наибольшей и называется максимальной работой.

Для интегрирования уравнения (II, 6) нужно знать зависимость между давлением и объемом газа, т. е. уравнение состояния газа.

Эта зависимость для идеального газа описывается уравнением состояния Менделеева - Клапейрона:

где n - число молей идеального газа; R- универсальная газовая постоянная, равная 8,314 дж/моль-град.

Рассмотрим выражения для максимальной работы расширения идеального газа в пяти процессах: изобарном, изотермном, адиабатном, изохорном и изобарно-изотермном.

1. Изобарный процесс осуществляется при постоянном давлении (р = const). При этом из уравнения (II, 6) получаем

Существует две формы передачи энергии от одних тел к другим — это совершение работы одних тел над другими и передача теплоты. Энергия механического движения может переходить в энергию теплового движения и наоборот. В таких переходах энергии выполняется закон сохранения энергии. В применении к процессам, рассматриваемым в термодинамике, закон сохранения энергии именуется первым законом (или первым началом) термодинамики. Этот закон является обобщением эмпирических данных.

Формулировка первого закона термодинамики

Первый закон термодинамики формулируют следующим образом:

Количество теплоты, которое подводится к системе, расходуется на совершение данной системой работы (против внешних сил) и изменение ее внутренней энергии. В математическом виде первый закон термодинамики можно записать в интегральном виде:

где - количество теплоты, которое получает термодинамическая система; - изменение внутренней энергии рассматриваемой системы; A - работа, которую выполняет система над внешними телами (против внешних сил).

В дифференциальном виде первый закон термодинамики записывают как:

где - элемент количества теплоты, который получает система; - бесконечно малая работа, которую выполняет термодинамическая система; - элементарное изменение внутренней энергии, рассматриваемой системы. Следует обратить внимание на то, что в формуле (2) - элементарное изменение внутренней энергии является полным дифференциалом, в отличие от и .

Количество теплоты считают положительным, если система тепло получает и отрицательным, если тепло отводится от термодинамической системы. Работа будет больше нуля, если ее совершает система, и работа будет считаться отрицательной, если она совершается над системой внешними силами.

В то случае, если система вернулась в первоначальное состояние, то изменение ее внутренней энергии будет равно нулю:

В таком случае в соответствии с первым законом термодинамики мы имеем:

Выражение (4) означает, что невозможен вечный двигатель первого рода. То есть, принципиально нельзя создать периодически действующую систему (тепловой двигатель), совершающую работу, которая была бы больше, чем количество теплоты, полученное системой извне. Положение о невозможности вечного двигателя первого рода, также является одним из вариантов формулировки первого закона термодинамики.

Примеры решения задач

ПРИМЕР 1

Задание Какое количество теплоты (), передано идеальному газу, имеющему объем V в процессе изохорного нагрева, если его давление изменяется на величину ? Считайте, что число степеней свободы молекула газа равно i.
Решение Основой для решения задачи является первый закон термодинамики, который мы будем использовать в интегральном виде:

Так как по условию задачи процесс с газом проводят изохорный (), то работа в данном процессе равна нулю, тогда первое начало термодинамики для изохорного процесса получит вид:

Изменение внутренней энергии определяют при помощи формулы:

где i - число степеней свободы молекулы газа; - количество вещества; R - универсальная газовая постоянная. Так как нам не известно, как изменяется температура газа в рассматриваемом процессе, то используем уравнение Менделеева - Клапейрона для того, чтобы найти :

Выразим из (1.4) температуру, запишем формулы для двух состояний рассматриваемой системы:

Используя выражения (1.5) найдем :

Из выражений (1.3) и (1.6) следует, что для изохорного процесса изменение внутренней энергии можно найти как:

А из первого начала термодинамики для нашего процесса (при ), имеем, что:

Ответ

ПРИМЕР 2

Задание Найдите изменение внутренней энергии кислорода (), работу совершенную им (A) и полученное количество теплоты () в процессе (1-2-3), который указан на графике (рис.1). Считайте, что м 3 ; 100 кПа; м 3 ; кПа.

Решение Изменение внутренней энергии не зависит от хода процесса, так как внутренняя энергия является функцией состояния. Она зависит только от конечного и начального состояний системы. Поэтому можно записать, что изменение внутренней энергии в процессе 1-2-3, равно:

где i - число степеней свободы молекулы кислорода (так как молекула состоит из двух атомов, то считаем ), - количество вещества, . Разность температур можно найти, если использовать уравнение состояния идеального газа и посмотреть на график процессов:

Представляет собой закон сохранения энергии, один из всеобщих законов природы (наряду с законами сохранения импульса, заряда и симметрии):

Энергия неуничтожаема и несотворяема ; она может только переходить из одной формы в другую в эквивалентных соотношениях.

Первое начало термодинамики представляет собой постулат - оно не может быть доказано логическим путем или выведено из каких-либо более общих положений. Истинность этого постулата подтверждается тем, что ни одно из его следствий не находится в противоречии с опытом.

Приведем еще некоторые формулировки первого начала термодинамики:

- Полная энергия изолированной системы постоянна;

- Невозможен вечный двигатель первого рода (двигатель, совершающий работу без затраты энергии).

Первое начало термодинамики устанавливает соотношение между теплотой Q, работой А и изменением внутренней энергии системы?U:

Изменение внутренней энергии системы равно количеству сообщенной системе теплоты минус количество работы, совершенной системой против внешних сил.

dU = δQ-δA (1.2)

Уравнение (1.1) является математической записью 1-го начала термодинамики для конечного, уравнение (1.2) - для бесконечно малого изменения состояния системы.

Внутренняя энергия является функцией состояния ; это означает, что изменение внутренней энергии?U не зависит от пути перехода системы из состояния 1 в состояние 2 и равно разности величин внутренней энергии U 2 и U 1 в этих состояниях:

U = U 2 -U 1 (1.3)

Следует отметить, что определить абсолютное значение внутренней энергии системы невозможно; термодинамику интересует лишь изменение внутренней энергии в ходе какого-либо процесса.

Рассмотрим приложение первого начала термодинамики для определения работы, совершаемой системой при различных термодинамических процессах (мы будем рассматривать простейший случай - работу расширения идеального газа).

Изохорный процесс (V = const; ?V = 0).

Поскольку работа расширения равна произведению давления и изменения объема, для изохорного процесса получаем:

Изотермический процесс (Т = const).

Из уравнения состояния одного моля идеального газа получаем:

δА = PdV = RT(I.7)

Проинтегрировав выражение (I.6) от V 1 до V 2 , получим

A=RT= RTln= RTln(1.8)

Изобарный процесс (Р = const).

Q p = ?U + P?V (1.12)

В уравнении (1.12) сгруппируем переменные с одинаковыми индексами. Получаем:

Q p = U 2 -U 1 +P(V 2 -V 1) = (U 2 + PV 2)-(U 1 +PV 1) (1.13)


Введем новую функцию состояния системы - энтальпию Н , тождественно равную сумме внутренней энергии и произведения давления на объем: Н = U + PV. Тогда выражение (1.13) преобразуется к следующему виду:

Q p = H 2 -H 1 = ?H (1.14)

Т.о., тепловой эффект изобарного процесса равен изменению энтальпии системы.

Адиабатический процесс (Q = 0, δQ = 0).

При адиабатическом процессе работа расширения совершается за счёт уменьшения внутренней энергии газа:

A = -dU=C v dT (1.15)

В случае если Сv не зависит от температуры (что справедливо для многих реальных газов), работа, произведённая газом при его адиабатическом расширении, прямо пропорциональна разности температур:

A = -C V ?T (1.16)

Задача №1. Найти изменение внутренней энергии при испарении 20 г этанола при температуре его кипения. Удельная теплота парообразования этилового спирта при этой температуре составляет 858,95 Дж/г, удельный объем пара - 607 см 3 /г (объемом жидкости пренебречь).

Решение :

1 . Вычислим теплоту испарения 20 г этанола: Q=q уд ·m=858,95Дж/г·20г = 17179Дж.

2 . Вычислим работу по изменению объема 20 г спирта при переходе его из жидкого состояния в парообразное: A= P?V,

где Р - давление паров спирта, равно атмосферному, 101325 Па (т.к. всякая жидкость кипит, когда давление ее паров равно атмосферному).

V=V 2 -V 1 =V ж -V п, т.к. V ж << V п, то объмом жидкости можно пренебречь и тогда V п =V уд ·m. Cледовательно, А=Р·V уд ·m. А=-101325Па·607·10 -6 м 3 /г·20г=-1230 Дж

3. Вычислим изменение внутренней энергии:

U=17179Дж - 1230 Дж = 15949 Дж.

Поскольку?U>0, то следовательно при испарении этанола происходит увеличение внутренней энергии спирта.

Похожие публикации

Что такое магнитная проницаемость (мю) Относительная магнитная проницаемость парамагнетиков
Герой российской федерации (посмертно) майор Перов Александр Валентинович
Либретто бахчисарайский фонтан краткое содержание
Бродский И.А. Основные даты жизни и творчества. Иосиф бродский - биография, фото, стихи, личная жизнь поэта Иосиф бродский годы жизни
Использование мыслительных карт на уроках английского языка Ментальные карты как выучить английский
Самые великие предсказатели Предсказания знаменитых провидцев
Османская империя — история возникновения и падения государства Когда турецкие султаны перестали убивать своих братьев
Хлеб насущный Хлеб насущный значение и происхождение фразеологизма
Рейтинг книг татьяны гармаш-роффе
Масса системы. Центр масс. Центр масс тела. Равновесие. Масса тела Положение центра масс формула