Основные положения мкт и их обоснования. Основные положения молекулярно-кинетической теории и их опытное обоснование. Молекулярно-кинетическая теория – это совокупность воззрений, используемых для описания наблюдаемых и измеряемых свойств вещества на осно

Основные положения мкт и их обоснования. Основные положения молекулярно-кинетической теории и их опытное обоснование. Молекулярно-кинетическая теория – это совокупность воззрений, используемых для описания наблюдаемых и измеряемых свойств вещества на осно

1.Опытное обоснование основных положений молекулярно-кинетической теории строения вещества. Масса и размеры молекул.

Молекулярно-кинетическая теория - это раздел физики, изучающий свойства различных состояний вещества, основывающийся на представлениях о существовании молекул и атомов как мельчайших частиц вещества. В основе МКТ лежат три основных положения:

1. Все вещества состоят из мельчайших частиц: молекул, атомов или ионов.

2. Эти частицы находятся в непрерывном хаотическом движении, скорость которого определяет температуру вещества.

3. Между частицами существуют силы притяжения и отталкивания, характер которых зависит от расстояния между ними.

Основные положения МКТ подтверждаются многими опытными фактами. Существование молекул, атомов и ионов доказано экспериментально, молекулы достаточно изучены и даже сфотографированы с помощью электронных микроскопов. Способность газов неограниченно расширяться и занимать весь предоставленный им объем объясняется непрерывным хаотическим движением молекул. Упругость газов, твердых и жидких тел, способность жидкостей смачивать некоторые твердые тела, процессы окрашивания, склеивания, сохранения формы твердыми телами и многое другое говорят о существовании сил притяжения и отталкивания между молекулами. Явление диффузии - способность молекул одного вещества проникать в промежутки между молекулами другого - тоже подтверждает основные положения МКТ. Явлением диффузии объясняется, например, распространение запахов, смешивание разнородных жидкостей, процесс растворения твердых тел в жидкостях, сварка металлов путем их расплавления или путем давления. Подтверждением непрерывного хаотического движения молекул является также и броуновское движение - непрерывное хаотическое движение микроскопических частиц, нерастворимых в жидкости.

Движение броуновских частиц объясняется хаотическим движением частиц жидкости, которые сталкиваются с микроскопическими частицами и приводят их в движение. Опытным путем было доказано, что скорость броуновских частиц зависит от температуры жидкости. Теорию броуновского движения разработал А. Эйнштейн. Законы движения частиц носят статистический, вероятностный характер. Известен только один способ уменьшения интенсивности броуновского движения - уменьшение температуры. Существование броуновского движения убедительно подтверждает движение молекул.

Любое вещество состоит из частиц, поэтому количество вещества v принято считать пропорциональным числу частиц, т. е. структурных элементов, содержащихся в теле.

Единицей количества вещества является моль. Моль - это количество вещества, содержащее столько же структурных элементов любого вещества, сколько содержится атомов в 12 г углерода С12. Отношение числа молекул вещества к количеству вещества называют постоянной Авогадро:

Постоянная Авогадро показывает, сколько атомов и молекул содержится в одном моле вещества. Молярная масса - масса одного моля вещества, равная отношению массы вещества к количеству вещества:

Молярная масса выражается в кг/моль. Зная молярную массу, можно вычислить массу одной молекулы:

Средняя масса молекул обычно определяется химическими методами, постоянная Авогадро с высокой точностью определена несколькими физическими методами. Массы молекул и атомов со значительной степенью точности определяются с помощью масс-спектрографа.

Массы молекул очень малы. Например, масса молекулы воды:

Молярная масса связана с относительной молекулярной массой Мг. Относительная молекулярная масса - это величина, равная отношению массы молекулы данного вещества к 1/12 массы атома углерода С12. Если известна химическая формула вещества, то с помощью таблицы Менделеева может быть определена его относительная масса, которая, будучи выражена в килограммах, показывает величину молярной массы этого вещества.

Молекулярно-кинетическая теория обосновывается Приведем некоторые из доказательств беспорядочного хаотического движения молекул: а стремление газа занять весь предоставленный ему объем распространение пахучего газа по всему помещению; б броуновское движение беспорядочное движение мельчайших видимых в микроскоп частиц вещества находящихся во взвешенном состоянии и нерастворимых в ней. Диффузия проявляется во всех телах в газах жидкостях и твердых телах но в разной степени. Диффузию в газах можно наблюдать если сосуд с пахучим...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


ОПЫТНОЕ ОБОСНОВАНИЕ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ

Согласно молекулярно-кинетической теории все вещества состоят из мельчайших частиц - молекул. Молекулы находятся в непрерывном движении и взаимодействуют между собой. Молекула - наименьшая частица вещества, обладающая его химическими свойствами. Молекулы состоят из более простых частиц - атомов химически элементов. Молекулы различных веществ имеют различный атомный состав.

Молекулы обладают кинетической энергией E кин и одновременно потенциальной энергией взаимодействия E пот . В газообразном состоянии E кин > E пот . В жидком и твердом состояниях кинетическая энергия частиц сравнима с энергией их взаимодействия .

Три основных положения молекулярно - кинетической теории:

1. Все вещества состоят из молекул, т.е. имеют дискретное строение, молекулы разделены промежутками.

2. Молекулы находятся в непрерывном беспорядочном (хаотическом) движении.

3. Между молекулами тела существуют силы взаимодействия.

Молекулярно-кинетическая теория обосновывается

Приведем некоторые из доказательств беспорядочного (хаотического) движения молекул:

а) стремление газа занять весь предоставленный ему объем (распространение пахучего газа по всему помещению);

б) броуновское движение - беспорядочное движение мельчайших видимых в микроскоп частиц вещества, находящихся во взвешенном состоянии и нерастворимых в ней. Это движение происходит под действием беспорядочных ударов молекул, окружающей жидкости, находящихся в постоянном хаотическом движении;

в) диффузия - взаимное проникновение молекул соприкасающихся веществ. При диффузии молекулы одного тела, находясь в непрерывном движении, проникают в промежутки между молекулами другого соприкасающегося с ним тела и распространяются между ними. Диффузия проявляется во всех телах - в газах, жидкостях и твердых телах, - но в разной степени.

1. Диффузия.

Диффузию в газах можно наблюдать, если сосуд с пахучим газом открыть в помещении. Через некоторое время газ распространится по всему помещению.

Диффузия в жидкостях происходит значительно медленнее, чем в газах. Например, в стакан нальем раствор медного купороса, а затем, очень осторожно добавим слой воды и оставим стакан в помещении с постоянной температурой и где он не подвергается сотрясениям. Через некоторое время будем наблюдать исчезновение резкой границы между купоросом и водой, а через несколько дней жидкости перемешаются, несмотря на то, что плотность купороса больше плотности воды. Так же диффундирует вода со спиртом и прочие жидкости.

Диффузия в твердых телах происходит еще медленнее, чем в жидкостях (от нескольких часов до нескольких лет). Она может наблюдаться только в хорошо пришлифованных телах, когда расстояния между поверхностями пришлифованных тел близки к расстояниям между молекулами (10 -8 см). При этом скорость диффузии увеличивается при повышении температуры и давления.

Доказательства силового взаимодействия молекул:

а) деформация тел под влиянием силового воздействия;

б) сохранение формы твердыми телами;

в) поверхностное натяжение жидкостей и, как следствие, явление смачивания и капиллярности.

Между молекулами существуют одновременно силы притяжения и силы отталкивания (рис. 1). При малых расстояниях между молекулами преобладают силы отталкивания. По мере увеличения расстояния r между молекулами, как силы притяжения, так и силы отталкивания убывают, причем силы отталкивания убывают быстрее. Поэтому при некотором значении r 0 (расстояние между молекулами) силы притяжения и силы отталкивания взаимно уравновешиваются.

Рис. 1. Силы притяжения и силы отталкивания.

Если условиться отталкивающим силам приписывать положительный знак, а силам притяжения - отрицательный и произвести алгебраическое сложение сил отталкивания и притяжения, то получаем график, изображенный на рисунке 2.

Рис. 2. Алгебраическое сложение сил отталкивания и притяжения.

Рис. 3. Зависимость потенциальной энергии взаимодействия молекул от расстояния между ними.

На рисунке 3 дан график зависимости потенциальной энергии взаимодействия молекул от расстояния между ними. Расстояние r 0 между молекулами соответствует минимуму их потенциальной энергии (рис. 3). Для изменения расстояния между молекулами в ту или другую сторону требуется затратить работу против преобладающих сил притяжения или отталкивания. На меньших расстояниях (рис. 2) кривая круто поднимается вверх; эта область соответствует сильному отталкиванию молекул (обусловленному главным образом кулоновским отталкиванием сближающихся ядер). На больших расстояниях молекулы притягиваются.

Расстояние r 0 соответствует устойчивому равновесному взаимному положению молекул. Из рисунка 2 видно, что при увеличении расстояния между молекулами, преобладающие силы притяжения восстанавливают равновесное положение, а при уменьшении расстояние между ними равновесие восстанавливается преобладающими силами отталкивания.

Современные экспериментальные методы физики (рентгеноструктурный анализ, наблюдения с помощью электронного микроскопа и другие) позволили наблюдать микроструктуру веществ.

2. Число Авогадро.

Число граммов вещества, равное молекулярному весу этого вещества, называется грамм-молекулой или молем. Например, 2 г водорода составляет грамм-молекулу водорода; 32 г кислорода составляют грамм-молекулу кислорода. Масса одного моля вещества называется молярной массой этого вещества.

Обозначается через m . Для водорода ; для кислорода ; для азота и т.д.

Число молекул, содержащихся в одном моле разных веществ одинаково и называется числом Авогадро (N A ).

Число Авогадро чрезвычайно велико. Чтобы почувствовать его колоссальность, представьте себе, что в Черное море высыпали число булавочных головок (диаметр каждой около 1 мм), равное числу Авогадро. При этом оказалось бы, что в Черном море уже не остается места для воды: оно не только до краев, но и большим избытком оказалось бы заполненным этими булавочными головками. Авогадровым числом булавочных головок можно было бы засыпать площадь, равную, например, территории Франции, слоем толщиной около 1 км. И такое огромное число отдельных молекул содержится всего лишь в 18 г воды; в 2 г водорода и т.д.

Установлено, что в 1 см 3 любого газа при нормальных условиях (т.е. при 0 0 С и давлении 760 мм. рт. ст.) содержится 2,710 19 молекул.

Если взять число кирпичей, равное этому числу, то, будучи плотно уложенными, эти кирпичи покрыли бы поверхность всей суши Земного шара слоем высотой 120 м. Кинетическая теория газов позволяет вычислить лишь длину свободного пробега молекулы газа (т.е. среднее расстояние, которое проходит молекула от столкновения до столкновения с другими молекулами) и диаметр молекулы.

Приводим некоторые результаты этих вычислений.

Вещество

Длина свободного пробега

при 760 мм.рт.ст.

Диаметр молекулы

Водород Н 2

1,12310 -5 см

2,310 -8 см

Кислород О 2

0,64710 -5 см

2,910 -8 см

Азот N 2

0,59910 -5 см

3,110 -8 см

Диаметры отдельных молекул - величины малые. При увеличении в миллион раз молекулы были бы величиной с точку типографского шрифта этой книжки. Обозначим через m - массу газа (любого вещества). Тогда отношение дает число молей газа.

Число молекул газа n можно выразить:

(1).

Число молекул в единице объема n 0 будет равно:

(2) , где: V - объем газа.

Массу одной молекулы m 0 можно определить по формуле:

(3) .

Относительной массой молекулы m отн называется величина, равная отношению абсолютной массы молекулы m 0 к 1/12 массы атома углерода m oc .

(4), где m oc = 210 -26 кг.

3. Уравнение идеального газа и изопроцессы.

С помощью уравнения состояния идеального газа можно исследовать процессы, в которых масса газа и один из трех параметров - давление, объем или температура - остаются неизменными. Количественные зависимости между двумя параметрами газа при фиксированном значении третьего параметра называют газовыми законами.

Процессы, протекающие при неизменном значении одного из параметров, называют изопроцессами (от греч. «изос» - равный). Правда, в действительности ни один процесс не может протекать при строго фиксированном значении какого-либо параметра. Всегда имеются те или иные воздействия, нарушающие постоянство температуры, давления или объема. Лишь в лабораторных условиях удается поддерживать постоянство того или иного параметра с хорошей точностью, но в действующих технических устройствах и в природе это практически неосуществимо.

Изопроцесс - это идеализированная модель реального процесса, которая только приближенно отражает действительность.

Процесс изменения состояния термодинамической системы макроскопических тел при постоянной температуре называют изотермическим.

Для поддержания температуры газа постоянной необходимо, чтобы он мог обмениваться теплотой с большой системой - термостатом. Иначе при сжатии или расширении температура газа будет меняться. Термостатом может служить атмосферный воздух, если температура его заметно не меняется на протяжении всего процесса.

Согласно уравнению состояния идеального газа в любом состоянии с неизменной температурой произведение давления газа на его объём остаётся постоянным: pV=const при T=const. Для газа данной массы произведение давления газа на его объём постоянно, если температура газа не меняется.

Этот закон экспериментально был открыт английским учёным Р. Бойлером(1627 - 1691) и несколько позже французским учёным Э Мариоттом (1620 -1684). Поэтому он носит название закона Бойля - Мариотта.

Закон Бойля - Мариотта справедлив для любых газов, а так же и их смесей, например для воздуха. Лишь при давлениях, в несколько сотен раз больше атмосферного, отклонение от этого закона становится существенным.

Зависимость давления газа от объёма при постоянной температуре графически изображается кривой, которая называется изотермой. Изотерма газа изображает обратно пропорциональную зависимость между давлением и объёмом. Кривую такого рода в математике называют гиперболой.

Разным постоянным температурам соответствуют различные изотермы. При повышении температуры давление согласно уравнению состояния увеличивается, если V=const. Поэтому изотерма соответствующая более высокой температуре Т 2 , лежит выше изотермы, соответствующей более низкой температуре Т 1 .

Изотермическим процессом приближенно можно считать процесс медленного сжатия воздуха при расширении газа под поршнем насоса при откачке его из сосуда. Правда, температура газа при этом меняется, но в первом приближении этим изменением можно пренебречь

Процесс изменения состояния термодинамической системы при постоянном давлении называют изобарным (от греч. «барос» - вес, тяжесть).

Согласно уравнению в любом состоянии газа с неизменным давлением отношение объёма газа к его температуре остаётся постоянным: =const при p=const.

Для газа данной массы отношение объёма к температуре постоянно, если давление газа не меняется.

Этот закон был установлен экспериментально в 1802 году французским учёным Ж. Гей-Люссаком (1778 - 1850) и носит название закона Гей-Люссака.

Согласно уравнению объём газа линейно зависит от температуры при постоянном давлении: V=const T.

Эта зависимость графически изображается прямой, которая называется изобарой. Различным давлениям соответствуют разные изобары. С ростом давления объём газа при постоянной температуре согласно закону Бойля-Мариотта уменьшается. Поэтому изобара, соответствующая более высокому давлению p 2 , лежит ниже изобары, соответствующей более низкому давлению p 1 .

В области низких температур все изобары идеального газа сходятся в точке T=0. Но это не означает, что объём реального газа действительно обращается в нуль. Все газы при сильном охлаждении превращаются в жидкость, а к жидкостям уравнения состояния неприменимо.

Процесс изменения состояния термодинамической системы при постоянном объёме называют изохорным (от греч. «хорема» - вместимость).

Из уравнения состояния вытекает, что в любом состоянии газа с неизменным объёмом отношение давления газа к его температуре остаётся неизменным: =const при V=const.

Для газа данной массы отношение давления к температуре постоянно, если объём не меняется.

Этот газовый закон был установлен в 1787 году французским физиком Ж.Шарлем (1746 - 1823) и носит название закона Шарля. Согласно уравнению:

Const при V=const давления газа линейно зависит от температуры при постоянном объёме: p=const T.

Эта зависимость изображается прямой, называемой изохорой.

Разным объёмам соответствуют разные изохоры. С ростом объёма газа при постоянной температуре давление его согласно закону Бойля-Мариотта падает. Поэтому изохора, соответствующая большему объёму V 2 , лежит ниже изохоры, соответствующей меньшему объёму V 1 .

В соответствии с уравнением все изохоры начинаются в точке T=0.

Значит, давление идеального газа при абсолютном нуле равно нулю.

Увеличение давления газа в любой ёмкости или в электрической лампочке при нагревании является изохорным процессом. Изохорный процесс используется в газовых термостатах постоянного объёма.

4. Температура.

Любое макроскопическое тело или группа макроскопических тел называется термодинамической системой.

Тепловое или термодинамическое равновесие - такое состояние термодинамической системы, при котором все ее макроскопические параметры остаются неизменными: не меняются объем, давление, не происходит теплообмен, отсутствуют переходы из одного агрегатного состояния в другое и т.д. При неизменных внешних условиях любая термодинамическая система самопроизвольно переходит в состояние теплового равновесия.

Температура - физическая величина, характеризующая состояние теплового равновесия системы тел: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру.

Абсолютный нуль температуры - предельная температура, при которой давление идеального газа при постоянном объеме должно быть равно нулю или должен быть равен нулю объем идеального газа при постоянном давлении.

Термометр - прибор для измерения температуры. Обычно термометры градуируют по шкале Цельсия: температуре кристаллизации воды (таяния льда) соответствует 0°С, температуре ее кипения - 100°С.

Кельвин ввел абсолютную шкалу температур, согласно которой нулевая температура соответствует абсолютному нулю, единица измерения температуры по шкале Кельвина равна градусу Цельсия: [Т] = 1 К (Кельвин).

Связь температуры в энергетических единицах и температуры в градусах Кельвина:

где k = 1,38*10 -23 Дж/К - постоянная Больцмана.

Связь абсолютной шкалы и шкалы Цельсия:

T = t + 273, где t - температура в градусах Цельсия.

Средняя кинетическая энергия хаотического движения молекул газа пропорциональна абсолютной температуре:

Учитывая равенство (1), основное уравнение молекулярно-кинетической теории можно записать так: p = nkT .

Основные уравнения молекулярно-кинетической теории идеального газа для давления.

Газ называют идеальным, если:

1) собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;

2) между молекулами газа отсутствуют силы взаимодействия;

3) столкновения молекул газа со стенками сосуда абсолютно упругие.

Реальные газы (например, кислород и гелий) в условиях, близких к нормальным, а также при низких давлениях и высоких температурах близки к идеальным газам. Частицы идеального газа в промежутках между столкновениями движутся равномерно и прямолинейно. Давление газа на стенки сосуда можно рассматривать как ряд быстро следующих ударов газовых молекул о стенку. Рассмотрим, как вычислить давление, вызванное отдельными ударами. Представим себе, что по некоторой поверхности происходит ряд отдельных и частых ударов. Найдем такую среднюю постоянную силу , которая, действуя в течение времени t, за которое происходили отдельные удары, произведет такое же действие, как и все эти удары в своей совокупности. В таком случае импульс этой средней силы за время t должен равняться сумме импульсов всех тех ударов, которые получила поверхность за это время, т.е.

Где t 1 , t 2 , t 3 ... t n - время взаимодействия первой, второй, ..., n-й молекул со стенкой (т.е. длительность удара); f 1 , f 2 , f 3 ... f n - силы удара молекул о стенку. Из этой формулы следует:

(7).

Средняя сила давления, вызванная рядом отдельных ударов о некоторую поверхность, численно равна сумме импульсов всех ударов, полученных этой поверхностью за единицу времени называется изохорой.

5. Скорости газовых молекул.

Формулу (12) можно записать в виде:

(15), где (масса газа).

Из выражения (15) вычислим среднюю квадратичную скорость движения молекул газа:


(16) .

Зная, что (R-универсальная газовая постоянная; R=8,31 ), получим новые выражения для определения .

(17) .

Опытное определение скоростей движения молекул паров серебра впервые был проведен в 1920 г Штерном.

Рис. 5. Опыт Штерна.

Из стеклянного цилиндра Е выкачивался воздух (рис. 5). Внутри этого цилиндра помещался второй цилиндр Д, имеющий с ним общую ось О. Вдоль образующей цилиндра Д имелся прорез в виде узкой щели С. По оси протягивалась посеребренная платиновая проволока, по которой можно было пропускать ток. При этом проволока раскалялась, и серебро с ее поверхности обращалось в пар. Молекулы паров серебра разлетались в различные стороны, часть их проходила через щель С цилиндра Д и на внутренней поверхности цилиндра Е получался налет серебра в виде узкой полоски. На рис. 5 положение полоски серебра отмечено буквой А.

Когда вся система приводилась в очень быстрое движение таким образом, что проволока являлась осью вращения, то полоска А на цилиндре Е получилась смещенной в сторону, т.е. например, не в точке А, а в точке В. Это происходило потому, что пока молекулы серебра пролетали путь СА, точка А цилиндра Е успевала повернуться на расстояние АВ и молекулы серебра попадали не в точку А, а в точку В.

Обозначим величину смещения серебряной полоски АВ = d; радиус цилиндра Е через R, радиус цилиндра Д через r, а число оборотов всей системы в секунду через n .

За один оборот системы точка А на поверхности цилиндра Е пройдет путь, равный длине окружности 2πR, а за 1 секунду она пройдет путь . Время t, в течение которого точка А переместилась на расстояние АВ = d, будет равно: . За время t молекулы паров серебра пролетали расстояние CA = R - r . Скорость их движения v может быть найдена, как пройденный путь, деленный на время: или, заменяя t, получим: .

Налет серебра на стенке цилиндра Д получался размытым, что подтверждало наличие различных скоростей движения молекул Из опыта можно было определить наиболее вероятную скорость v вер которая соответствовала наибольшей толщине налета серебра.

Наиболее вероятную скорость можно рассчитать по формуле, данной Максвеллом: (18). По вычислениям Максвелла средняя арифметическая скорость движения молекул равна: (19).

6. Уравнение состояния идеального газа - уравнение Менделеева-Клапейрона.

Из основного уравнения молекулярно-кинетической теории (формула (14) следует закон Авогадро: в равных объемах разнородных газов при одинаковых условиях (одинаковой температуре и одинаковом давлении) содержится одинаковое число молекул: (для одного газа), (для другого газа).

Если V 1 = V 2 ; Т 1 = Т 2 ; r 1 = r 2 , то n 01 = n 02 .

Напомним, что единицей количества вещества в системе СИ является моль (грамм-молекула) масса m одного моля вещества называется молярной массой этого вещества. Число молекул, содержащихся в одном моле разных веществ одинаково и называется число Авогадро (N A = 6,0210 23 1/моль).

Запишем уравнение состояния идеального газа для одного моля: , где V m - объем одного моля газа; , где V m - объем одного моля газа; (универсальная газовая постоянная).

Окончательно имеем: (26).

Уравнение (26) называется уравнением Клапейрона (для одного моля газа). При нормальных условиях (р = 1,01310 5 Па и Т = 273,15 0 К) молярный объем любого газа V m = 22,410 -3 . Из формулы (26) определим ; .

От уравнения (26) для моля газа можно перейти к уравнению Менделеева-Клапейрона для любой массы газа m.

Отношение дает число молей газа. Левую и правую части неравенства (26) умножим на .

Имеем , где объем газа.

Окончательно запишем: (27 ) . Уравнение (27) - уравнение Менделеева-Клапейрона. В это уравнение можно внести плотность газа и .

В формуле (27) заменим V и получим или .

7. Опытные газовые законы. Давление смеси идеальных газов (закон Дальтона).

Опытным путем, задолго до появления молекулярно-кинетической теории, был открыт целый ряд законов, описывающих равновесные изопроцессы в идеальном газе. Изопроцесс - это равновесный процесс, при котором один из параметров состояния не изменяется (постоянен). Различают изотермический (T = const), изобарический (p = const), изохорический (V = const) изопроцессы. Изотермический процесс описывается законом Бойля-Мариотта: "если в ходе процесса масса и температура идеального газа не изменяются, то произведение давления газа на его объем есть величина постоянная PV = const (29). Графическое изображение уравнения состояния называют диаграммой состояния. В случае изопроцессов диаграммы состояния изображаются двумерными (плоскими) кривыми и называются соответственно изотермами, изобарами и изохорами.

Изотермы, соответствующие двум разным температурам, приведены на рис. 6.

Рис. 6. Изотермы, соответствующие двум разным температурам.

Изобарический процесс описывается законом Гей-Люссака: "если в ходе процесса давление и масса идеального газа не изменяются, то отношение объема газа к его абсолютной температуре есть величина постоянная: (30).

Изобары, соответствующие двум разным давлениям, приведены на рис.7.

Рис. 7. Изобары, соответствующие двум разным давлениям.

Уравнение изобарического процесса можно записать иначе: 31), где V 0 - объем газа при 0 0 С; V t - объем газа при t 0 C; t - температура газа в градусах Цельсия; α - коэффициент объемного расширения. Из формулы (31) следует, что . Опыты французского физика Гей-Люссака (1802 г.) показали, что коэффициенты объемного расширения всех видов газов одинаковы и , т.е. при нагревании на 1 0 С газ увеличивает свой объем на часть того объема, который он занимал при 0 0 С. На рис. 8 изображен график зависимости объема газа V t от температуры t 0 C.

Рис. 8. График зависимости объема газа V t от температуры t 0 C.

Изохорический процесс описывается законом Шарля: "если в ходе процесса объем, и масса идеального газа не изменяются, то отношение давления газа к его абсолютной температуре есть величина постоянная:

(32).

Изохоры, соответствующие двум разным объемам, приведены на рис. 9.

Рис. 9. Изохоры, соответствующие двум разным объемам.

Уравнение изохорического процесса можно записать иначе: (33), где - давление газа при С; - давление газа при t; t - температура газа в градусах Цельсия; - температурный коэффициент давления. Из формулы (33) следует, что . Для всех газов и . Если газ нагреть на С (при V=const), то давление газа возрастет на часть того давления, которое он имел при С. На рис.10 изображен график зависимости давления газа от температуры t.

Рис. 10. График зависимости давления газа от температуры t.

Если продолжить прямую AB до пересечения ее с осью x (точка ), то значение абсциссы этой определиться из формулы (33), если приравнять нулю.

;

Следовательно, при температуре давление газа должно было бы обратиться в нуль, однако, при подобном охлаждении газ не сохранит своего газообразного состояния, а обратиться в жидкость и даже в твердое тело. Температура носит название абсолютного нуля.

В случае механической смеси газов, не вступающих в химические реакции, давление смеси также определяется формулой , где (концентрация смеси равно сумме концентраций компонентов смеси всего n - компонент).

Закон Дальтона гласит: Давление смеси равно сумме парциальных давлений газов, образующих смесь. . Давления называется парциальными. Парциальное давление - это давление, которое создавал бы данный газ, если бы он один занимал тот сосуд, в котором находится смесь (в том же количестве, в котором он содержится в смеси).

СПИСОК ЛИТЕРАТУРЫ

1. Брычков Ю.А., Маричев О.И., Прудников А.П. Таблицы неопределенных интегралов: Справочник. - М.: Наука, 1986.

2. Коган М.Н. Динамика разреженного газа. М., Физматлит, 1999.

3. Кикоин А.К., Молекулярная физика. М., Физматлит, 1976.

4. Сивухин Д.В. Общий курс физики, т. 2. Термодинамика и молекулярная физика. М., Физматлит, 1989.

5. Кирьянов А.П., Коршунов С.М. Термодинамика и молекулярная физика. Пособие для учащихся. Под ред. проф. А.Д. Гладуна. - М., «Просвещение», 1977.

PAGE \* MERGEFORMAT 3

Другие похожие работы, которые могут вас заинтересовать.вшм>

13389. Основы молекулярно-кинетической теории (МКТ) 98.58 KB
Все вещества состоят из частиц молекул атомов разделенных промежутками. Доказательства: фотографии атомов и молекул сделанные с помощью электронного микроскопа; возможность механического дробления вещества растворение вещества в воде диффузия сжатие и расширение газов. броуновское движение мелких инородных взвешенных в жидкости частиц под действием не скомпенсированных ударов молекул.
8473. Молекулярно-кинетическая теория (МКТ) 170.1 KB
Средняя энергия одной молекулы Давление газа с точки зрения МКТ Уравнение состояния идеального газа Температура техническая и термодинамическая Идеальный газ притяжение и отталкивание молекул Согласно МКТ любое тело твердое жидкое газообразное состоит из мельчайших обособленных частиц называемых молекулами. При небольшом изменении взаимного расстояния между молекулами от r до rΔr силы взаимодействия совершают работу Потенциальная энергия...
2278. ЭЛЕМЕНТАРНАЯ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ ГАЗОВ 35.23 KB
объясняются если принять следующие положения молекулярнокинетической теории строения вещества: 1. Все тела состоят из молекул атомов или ионов. Молекулы атомы из которых состоят тела находятся в непрерывном хаотическом движении которое называется тепловым.
2649. Молекулярно-кинетическая теория (МКТ) идеального газа 572.41 KB
Молекулярно-кинетическая теория МКТ идеального газа План Понятие идеального газа. Внутренняя энергия идеального газа. Давление газа с точки зрения молекулярно-кинетической теории идеального газа основное уравнение молекулярно-кинетической теории. Уравнение состояния идеального газа уравнение Клапейрона-Менделеева.
21064. ИДЕНТИФИКАЦИЯ КОЛЛЕКЦИОННЫХ КУЛЬТУР БАКТЕРИЙ СОВРЕМЕННЫМИ МАСС-СПЕКТРОМЕТРИЧЕСКИМИ И МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИМИ МЕТОДАМИ 917.68 KB
Были выделены чистые культуры микроорганизмов, определены морфологические и культуральные признаки. Проведена идентификация методами МАЛДИ-МС и ПЦР с последующим секвенированием нуклеотидных последовательностей фрагментов генов 16S рРНК.
12050. Набор реагентов для молекулярно-генетической диагностики моноклональных и поликлональных В-клеточных популяций лимфоцитов методом полимеразной цепной реакции (ЛИМФОКЛОН) 17.25 KB
Создан набор реагентов для молекулярногенетической диагностики моноклональных и поликлональных Вклеточных популяций лимфоцитов методом полимеразной цепной реакции ЛИМФОКЛОН. Набор реагентов ЛИМФОКЛОН предназначен для дифференциальной диагностики моноклональных и поликлональных Вклеточных популяций лимфоцитов в биопсийном материале парафиновых срезах тканей методом полимеразной цепной реакции с детекцией продуктов амплификации методом вертикального электрофореза в акриламидном геле. Набор предназначен только для in vitro диагностики.
21333. Биохимическое обоснование бадминтона 36.73 KB
Введение Рассмотрим бадминтон как вид спорта требующий от спортсмена затраты большого количества сил и энергии способного моментально мобилизовать свой организм для совершения прыжков перемещений сильных ударов и умеющего расслабиться за короткое время сбросить напряжение и тут же собраться для продолжения игры. Для тренеров и спортсменов необходимо знать и учитывать те химические процессы которые происходят в организме спортсмена во время тренировок игр и соревнований при выявлении работоспособности спортсменов оптимальном режиме их...
21845. Обоснование цены продукции фирмы 131.66 KB
Характеристика предприятия Частное предприятие Элегия Виды деятельности производство металлочерепицы. Эта канавка уберегает кровлю от подтеканий воды извне и избавляет покупателя металлочерепицы от приобретения гидробарьера гидробарьер это полимерная пленка которую подстилают под металлочерепицу. Все это снижает себестоимость производства металлочерепицы. металлочерепицы на оборудовании ЧП Элегия...
13812. Обоснование технологической схемы обеззараживания сточных вод 291.22 KB
Основными загрязнениями сточных вод являются физиологические выделения людей и животных, отходы и отбросы, получающиеся при мытье продуктов питания, кухонной посуды, стирке белья, мытье помещений и поливке улиц, а также технологические потери, отходы и отбросы на промышленных предприятиях. Бытовые и многие производственные сточные воды содержат значительные количества органических веществ
12917. Обоснование оценок искомых параметров и их ошибок 160.34 KB
Подчеркнем что определение систематических ошибок не является задачей статистики. Будем считать что оценка соответствующих параметров является хорошей если она удовлетворяет следующим условиям. Является эффективной в том смысле что несмещенная оценка обладала бы наименьшей дисперсией. Известно лишь что.

Основные положения молекулярно-кинетической теории (МКТ)

и их опытное обоснование.

Цели урока:

Образовательные:

сформулировать основные положения МКТ;

раскрыть научное и мировоззренческое значение броуновского движения;

установить характер зависимости сил притяжения и отталкивания от расстояния между молекулами; учиться решать качественные задачи;

Развивающие:

развивать умение применять знания теории на практике; наблюдательность, самостоятельность; мышление учеников посредством логических учебных действий, умение извлекать информацию и делать выводы

Воспитательные: продолжить формирование представлений о единстве и взаимосвязи явлений природы.

Планируемые результаты:

Знать: основные положения молекулярно кинетической теории и их опытные обоснования; понятия диффузии, броуновского движения.

Уметь: формулировать гипотезы и делать выводы, решать качественные задачи.

Тип урока: урок - семинар, изучение нового материала

Регламент : 2 урока

Комплексно-методическое обеспечение : мультимедийный проектор, компьютер, экран, рисунки с описанием опытов, приборы для опытов.

Пояснительная записка.

Класс разбивается на 3 группы по 4-5 человек. Каждая группа получает задание подготовить рассказ об опытном обосновании одного из положений МКТ. Роли между собой распределяют самостоятельно: один готовит теоретический материал, другой - презентацию (или слайды для интерактивной доски), остальные - готовят опыты. Так как материал в общих чертах ребятам уже знаком (по 7 классу), задание вполне им по силам.

В течение недели каждая группа должна выполнить свое задание.

На уроке каждая группа получает на выступление по 20 минут.

После выступления ребят (которое конспектируется всеми остальными) идет 5-минутное обсуждение и ответы на вопросы товарищей

Затем вопросы задает учитель (всем, в том числе и творческой группе)

В конце урока учитель подводит итоги, делает общие выводы

Вступление учителя

Американский физик Рейман считал, что «…Если человечество и плоды его трудов исчезнут и для будущих поколений разрешено будет оставить одну фразу, то это будет следующее:

А) Вещество состоит из частиц;

Б) Частицы движутся;

В) Взаимодействуют между собой»

Все вещества состоят из частиц: молекул, атомов, ионов, между которыми есть промежутки.

1) Механическое дробление (мел, пластилин)

2) Растворение вещества (марганцовка, сахар)

3) Смешивание разных жидкостей (воды и спирта) показывает, что объём смеси меньше суммарного объёма, занимаемого двумя жидкостями до их смешивания. Это можно объяснить тем, что между молекулами жидкостей есть пустоты, и при смешивании жидкостей молекулы одной из них проникают в свободное пространство между молекулами другой жидкости.

При нагревании тела расширяются (промежутки между молекулами увеличиваются, размеры молекул не изменяются)

4) Опыт. Нагреваем стальной шарик, который в не нагретом состоянии спокойно проходит сквозь стальное кольцо. После нагревания шарик застревает в кольце. Остыв, шарик проваливается в кольцо.

5) Колбу, в которую вставлена резиновая пробка со стеклянной трубкой, устанавливают так, что конец трубки оказывается опущенным в воду. При нагревании колбы воздух, находящийся в ней, расширяется и начинает выходить из неё. Об этом можно судить по пузырькам, которые образовываются на конце трубки опущенной в воду, отрываются и всплывают. После прекращения нагревания, вода, находящаяся в стакане, начнет подниматься по трубке и заполнять колбу.

Ввод: Газы, как и твердые тела, при нагревании также увеличиваются в объеме, а при охлаждении уменьшаются в объеме.

Примеры веществ, состоящих из различного числа атомов:

1-атомные: инертные газы (Не, Ne…); металлы.

Анальгин-38 атомов

Белки-тысячи атомов

Полимеры-десятки тысяч атомов

Каучук-1/2 миллиона атомов

Размеры молекул . Размеры молекул очень малы (порядка 10 нм)

объем капли оливкового масла V=1мм² растекается по площади 0,6м²

толщина слоя h=V/S =1,7∙10^-7см (порядка 6 молекул)

d молекул = 10 н м

Число молекул. Число молекул даже в небольшом объеме огромно (например, в наперстке воды порядка 1023 молекул)

Капля воды m=1г занимает объем V=1см³

Одна молекула занимает объем V0 ≈ d³ ≈ 27∙10^-24см³

Число молекул N=V/V0 = 3,7∙10^22

Масса молекул.

m0=m/N= 1г/3,7∙10^22≈ 27∙10-23 г m 0 ≈10^ -26 кг

Относительная молекулярная масса - сравнивается с 1/12 массы атома углерода.

М r = 12 m 0 / m с

1 аем = 1,66∙10^ -27 кг

Количество вещества

1 моль - количества вещества, в котором содержится столько же атомов (молекул), сколько в 12г углерода.

Число Авогадро N А - число молекул в 1 моле вещества.

N А = 6 , 02 ∙10 2 3

Количество вещества ν - число молей ν = N / N А = m / M

Молярная масса М - масса 1 моля М = m0N А (Определяется по таблице Менделеева в г/моль)

Масса 1 молекулы m0=М/ N А

В каком всем известном приборе используется тепловое расширение жидкостей? (в термометре)

Приведите примеры теплового расширения (провисание проводов летом)

Зачем между рельсами оставляют зазор? (чтобы при тепловом расширении летом они не деформировались)

II. Молекулы беспорядочно и непрерывно движутся

Опытные обоснования: диффузия; броуновское движение.

Диффузия - взаимное проникновение молекул одного вещества между молекулами другого. Примеры: распространение запахов; засолка овощей и др

Диффузия происходит благодаря хаотическому движению молекул. При нагревании скорость диффузии повышается, т.к. увеличивается интенсивность беспорядочного движения молекул. Нетрудно понять, что притяжение молекул препятствует диффузии, поэтому диффузия в твердых телах происходит очень медленно; для ее ускорения необходимо разогреть две поверхности и сильно прижать друг к другу. Диффузию - самопроизвольное перемешивание веществ за счет движения молекул - надо отличать от принудительного перемешивания веществ. Когда мы перемешиваем ложечкой сахар в чае − это не диффузия. Казалось бы, по скорости диффузии можно сделать вывод и о скоростях молекул. Проходят часы, прежде чем частицы марганцовки распространятся на несколько сантиметров в воде. Несколько минут нужно, чтобы почувствовать запах духов, разлитых на расстоянии нескольких метров.

Броуновское движение - движение частиц, вызванное ударами молекул Например: пылинки в неподвижном воздухе. Причина броуновского движения: удары молекул не компенсируются.

Одним из первых непосредственных доказательств наличия теплового хаотического движения частиц в веществе явилось открытие в 1827 английским ботаником Броуном так называемого броуновского движения. Оно заключается в том, что весьма малые (видимые только в микроскоп) взвешенные в жидкости частицы всегда находятся в состоянии непрерывного хаотического движения, которое не зависит от внешних причин и оказывается проявлением внутренних движений в веществе. Броуновское движение вызывается толчками, испытываемыми взвешенными частицами со стороны окружающих молекул, находящихся в тепловом движении. Эти толчки никогда в точности не уравновешивают друг друга, поэтому под влиянием ударов молекул окружающей среды скорость броуновской частицы непрерывно и беспорядочно меняется по величине и направлению. Последнюю точку в дискуссии о непрерывности и дискретности материи поставила теория броуновского движения, разработанная Эйнштейном и Смолуховским в 1905 году и экспериментально подтвержденная Перреном в 1912 году. Это явление состоит в том, что мелкие частицы, взвешенные в жидкости или газе, совершают беспорядочные молекул. Возможность изучения движения этих частиц существенно зависит от их размеров. Слишком крупные частицы могут только колебаться, слишком мелкие частицы движутся почти так же быстро, как и молекулы, и плохо поддаются наблюдениям. Размеры броуновских частиц в тысячи раз превышают размеры молекул, поэтому они видны в обычный микроскоп и за их скачками удобно следить. Понятно, что при нагревании интенсивность броуновского движения повышается. Скорость движения связана с температурой.

Опыт Штерна(1920)

Если цилиндры неподвижны, то атомы попадают в точку n.

При вращении цилиндров со ско-ростью ω атомы попадают в точку n1. Так как скорости атомов неодинаковы, то полоска размыта.

Время прохождения молекулой расстояния ℓ равно времени поворота диска 2 на угол α.

Скорость молекул серебра 600м/с.

Распределения молекул по скоростям

График распределения молекул по скоростям. Английский физик Дж. Максвелл и австрийский физик Л. Больцман. Кривая распределения Максвелла соответствует результатам, полученным в опыте Штерна. Количество частиц, имеющих скорости в интервале Dυ, рав-но DN, υ - одна из скоростей этого интервала. Из графика видно, что количество частиц, имеющих ско-рости в равных интервалах Dυ1 и Dυ2, различно. Скорость, около которой расположены наиболее «населенные» интервалы,— наиболее вероятная скорость теплового движения молекул.

υнв наиболее вероятная скорость; υср средняя скорость

∆N - число молекул со скоростью в интервале от υ + ∆υ; ∆υ = υ ∆α / α

Ос новные выводы

1. Распределение по скоростям имеет определенную закономерность.

2. Среди молекул газа имеются как очень быстрые, так и очень медленные молекулы.

3. Распределение молекул по скоростям зависит от температуры.

4. Чем больше Т, тем больше максимум кривой распределения смещается в сторону больших скоростей.

6) Брызгают дезодорантом и все в классе чувствуют запах

7 ) В колбу помещают листочки бумаги, смоченные фенолфталеином - веществом, которое при соединении с аммиаком окрашивается в оранжевый цвет. Это свойство фенолфталеина служить индикатором присутствия аммиака, демонстрируем предварительно на отдельном листочке бумаги, смоченным этим веществом. После этого у горлышка колбы закрепляют ватку с аммиаком. Через некоторое время листочки бумаги, смоченные фенолфталеином, окрашиваются в оранжевый цвет

8) Окрашивание воды марганцовкой

В различных агрегатных состояниях характер этого движения различен:

В твердых телах молекулы колеблются вблизи положений равновесия; твердые тела

сохраняют форму и объем (их трудно деформировать);

В жидкостях молекулы колеблются почти так же, как в твердых телах, но сами

положения равновесия постоянно перемещаются (молекулы жидкости - это

"кочевники"); жидкости имеют конечный объем и мало сжимаемы;

В газах молекулы свободно и хаотически (беспорядочно) движутся; газ занимает

весь предоставленный ему объем.

Благодаря различию в молекулярном строении вещества, находящиеся в различных

агрегатных состояниях, ведут себя по-разному. Так, при одинаковых температурах

диффузия в газах происходит в десятки тысяч раз быстрее, чем в жидкостях, и в

миллиарды раз быстрее, чем в твердых телах.

Почему так мала скорость диффузии в газах, если молекулы имеют столь большие скорости?

Объясните процесс сварки металлов путем их расплавления или путем давления

Объясните изменение плотности земной атмосферы с высотой. (Диффузия газа в гравитационном поле)

III.Молекулы взаимодействуют.

Молекулы взаимодействуют друг с другом: между ними действуют силы отталкивания и притяжения, которые быстро убывают при увеличении расстояний между молекулами. Природа этих сил электромагнитная. Силы притяжения препятствуют испарению жидкости, растяжению твердого тела.

При попытке сжать твердое или жидкое тело мы ощущаем значительные силы отталкивания.

В притяжении молекул легко убедиться при наблюдении опытов, связанных с поверхностным натяжением и смачиванием.

9) Сжатие и растяжение тел (пружина)

10) Соединение стальных цилиндров

11) Опыт с пластинками и водой (Смачивают две стеклянные пластинки и прижимают их друг к другу. После пытаются их отсоединить, для этого прилагают некоторые усилия).

12) Явление отсутствия смачивания монетка, смазанная маслом, плавает на поверхности воды

13) Капиллярные явления - подъем подкрашенной воды в капилярах

Объясните действие клея.

Пофантазируйте:

что было бы, если бы между молекулами не существовало сил притяжения?

что было бы, если бы между молекулами не существовало сил отталкивания?

Молекулярно-кинетическая теория - это раздел физики, изучающий свойства различных состояний вещества, основывающийся на представлениях о существовании молекул и атомов как мельчайших частиц вещества. В основе МКТ лежат три основных положения:

1. Все вещества состоят из мельчайших частиц: молекул, атомов или ионов.

2. Эти частицы находятся в непрерывном хаотическом движении, скорость которого определяет температуру вещества.

3. Между частицами существуют силы притяжения и отталкивания, характер которых зависит от расстояния между ними.

Основные положения МКТ подтверждаются многими опытными фактами. Существование молекул, атомов и ионов доказано экспериментально, молекулы достаточно изучены и даже сфотографированы с помощью электронных микроскопов. Способность газов неограниченно расширяться и занимать весь предоставленный им объем объясняется непрерывным хаотическим движением молекул. Упругость газов, твердых и жидких тел, способность жидкостей смачивать некоторые твердые тела, процессы окрашивания, склеивания, сохранения формы твердыми телами и многое другое говорят о существовании сил притяжения и отталкивания между молекулами. Явление диффузии - способность молекул одного вещества проникать в промежутки между молекулами другого - тоже подтверждает основные положения МКТ. Явлением диффузии объясняется, например, распространение запахов, смешивание разнородных жидкостей, процесс растворения твердых тел в жидкостях, сварка металлов путем их расплавления или путем давления. Подтверждением непрерывного хаотического движения молекул является также и броуновское движение - непрерывное хаотическое движение микроскопических частиц, нерастворимых в жидкости.

Движение броуновских частиц объясняется хаотическим движением частиц жидкости, которые сталкиваются с микроскопическими частицами и приводят их в движение. Опытным путем было доказано, что скорость броуновских частиц зависит от температуры жидкости. Теорию броуновского движения разработал А. Эйнштейн. Законы движения частиц носят статистический, вероятностный характер. Известен только один способ уменьшения интенсивности броуновского движения - уменьшение температуры. Существование броуновского движения убедительно подтверждает движение молекул.

Любое вещество состоит из частиц, поэтому количество вещества v принято считать пропорциональным числу частиц, т. е. структурных элементов, содержащихся в теле.

Единицей количества вещества является моль. Моль - это количество вещества, содержащее столько же структурных элементов любого вещества, сколько содержится атомов в 12 г углерода С12. Отношение числа молекул вещества к количеству вещества называют постоянной Авогадро:

Постоянная Авогадро показывает, сколько атомов и молекул содержится в одном моле вещества. Молярная масса - масса одного моля вещества, равная отношению массы вещества к количеству вещества:

Молярная масса выражается в кг/моль. Зная молярную массу, можно вычислить массу одной молекулы:

Молярная масса связана с относительной молекулярной массой Мг. Относительная молекулярная масса - это величина, равная отношению массы молекулы данного вещества к 1/12 массы атома углерода С12. Если известна химическая формула вещества, то с помощью таблицы Менделеева может быть определена его относительная масса, которая, будучи выражена в килограммах, показывает величину молярной массы этого вещества.

Молекулярно-кинетическая теория (МКТ) - это раздел физики, изучающий свойства различных состояний вещества, основывающийся на представлениях о существовании молекул и атомов как мельчайших частиц вещества. В основе МКТ лежат три основных положения :

1 . Все вещества состоят из мельчайших частиц: молекул, атомов или ионов.
2 . Эти частицы находятся в непрерывном хаотическом движении, скорость которого определяет температуру вещества.
3 . Между частицами существуют силы притяжения и отталкивания, характер которых зависит от расстояния между ними, т.е. частицы взаимодействуют друг с другом.

Основные положения МКТ подтверждаются многими опытными фактами.

Существование молекул, атомов и ионов доказано экспериментально, молекулы достаточно изучены и сфотографированы с помощью электронных микроскопов.

Способность газов неограниченно расширяться и занимать весь предоставленный им объем объясняется непрерывным хаотическим движением молекул.

Упругость газов, твердых и жидких тел, способность жидкостей смачивать некоторые твердые тела, процессы окрашивания, склеивания, сохранения формы твердыми телами и многое другое говорят о существовании сил притяжения и отталкивания между молекулами.

Явление диффузии - способность молекул одного вещества проникать в промежутки между молекулами другого - тоже подтверждает основные положения МКТ. Явлением диффузии объясняется, например, распространение запахов, смешивание разнородных жидкостей, процесс растворения твердых тел в жидкостях, сварка металлов путем их расплавления или путем давления. Подтверждением непрерывного хаотического движения молекул является также и броуновское движение - непрерывное хаотическое движение микроскопических частиц, нерастворимых в жидкости. Движение броуновских частиц объясняется хаотическим движением частиц жидкости, которые сталкиваются с микроскопическими частицами и приводят их в движение. Опытным путем было доказано, что скорость броуновских частиц зависит от температуры жидкости. Теорию броуновского движения разработал А. Эйнштейн.

Любое вещество состоит из частиц, поэтому количество вещества ν принято считать пропорциональным числу частиц, содержащихся в теле. Единицей количества вещества является моль. Отношение числа молекул вещества к количеству вещества называют постоянной Авогадро : , N A =6,02∙10 23 моль -1 .

Постоянная Авогадро показывает, сколько атомов и молекул содержится в одном моле вещества.

Молярная масса - масса одного моля вещества, равная отношению массы вещества к количеству вещества: . Молярная масса выражается в кг/моль . Зная молярную массу, можно вычислить массу одной молекулы: .

Массы молекул очень малы, например, масса молекулы воды: m=29,9∙10 -27 кг , поэтому удобно использовать не абсолютные значения масс, а относительные. Относительные атомные массы всех химических элементов указаны в таблице Менделеева. Физическими методами удалось определить массы некоторых атомов в абсолютных единицах. Так появилась атомная единица массы (а.е.м.), равная 1/12 массы атомов углерода: 1 а.е.м. =1, 66∙10 -2 7 .
Молярная масса связана с относительной молекулярной массой Мr . Относительная молекулярная масса - это величина, равная отношению массы молекулы данного вещества к 1/12 массы атома углерода. Если известна химическая формула вещества, то с помощью таблицы Менделеева может быть определена его относительная масса.

Похожие публикации

Что такое магнитная проницаемость (мю) Относительная магнитная проницаемость парамагнетиков
Герой российской федерации (посмертно) майор Перов Александр Валентинович
Либретто бахчисарайский фонтан краткое содержание
Бродский И.А. Основные даты жизни и творчества. Иосиф бродский - биография, фото, стихи, личная жизнь поэта Иосиф бродский годы жизни
Использование мыслительных карт на уроках английского языка Ментальные карты как выучить английский
Самые великие предсказатели Предсказания знаменитых провидцев
Османская империя — история возникновения и падения государства Когда турецкие султаны перестали убивать своих братьев
Хлеб насущный Хлеб насущный значение и происхождение фразеологизма
Рейтинг книг татьяны гармаш-роффе
Масса системы. Центр масс. Центр масс тела. Равновесие. Масса тела Положение центра масс формула