Сила вязкого трения. Вязкое (жидкое) трение Определить коэффициент сопротивления вязкой среды

Сила вязкого трения. Вязкое (жидкое) трение Определить коэффициент сопротивления вязкой среды

Вязкость (внутреннее трение) (англ . viscosity) - одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей - это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно. Основной закон вязкого течения был установлен И. Ньютоном (1687): В применении к жидкостям различают вязкость:

  • Динамическая (абсолютная) вязкость µ – сила, действующая на единичную площадь плоской поверхности, которая перемещается с единичной скоростью относительно другой плоской поверхности, находящейся от первой на единичном расстоянии. В системе СИ динамическая вязкость выражается в Па×с (паскаль-секунда), внесистемная единица П (пуаз).
  • Кинематическая вязкость ν – отношение динамической вязкости µ к плотности жидкости ρ .
ν= µ / ρ ,
  • ν , м 2 /с – кинематическая вязкость;
  • μ , Па×с – динамическая вязкость;
  • ρ , кг/м 3 – плотность жидкости.

Сила вязкого трения

Это явление возникновения касательных сил, препятствующих перемещению частей жидкости или газа друг по отношению к другу. Смазка между двумя твердыми телами заменяет сухое трение скольжения трением скольжения слоев жидкости или газа по отношению друг к другу. Скорость частиц среды плавно меняется от скорости одного тела до скорости другого тела.

Сила вязкого трения пропорциональна скорости относительного движения V тел, пропорциональна площади S и обратно пропорциональна расстоянию между плоскостями h .

F=-V S / h ,

Коэффициент пропорциональности, зависящий от сорта жидкости или газа, называют коэффициентом динамической вязкости . Самое важное в характере сил вязкого трения то, что при наличии любой сколь угодно малой силы тела придут в движение, то есть не существует трения покоя . Качественно существенное отличие сил вязкого трения от сухого трения

Если движущееся тело полностью погружено в вязкую среду и расстояния от тела до границ среды много больше размеров самого тела, то в этом случае говорят о трении или сопротивлении среды . При этом участки среды (жидкости или газа), непосредственно прилегающие к движущемуся телу, движутся с такой же скоростью, как и само тело, а по мере удаления от тела скорость соответствующих участков среды уменьшается, обращаясь в нуль на бесконечности.

Сила сопротивления среды зависит от:

  • ее вязкости
  • от формы тела
  • от скорости движения тела относительно среды.

Например, при медленном движении шарика в вязкой жидкости силу трения можно найти, используя формулу Стокса:

F=-6 R V,

Качественно существенное отличие сил вязкого трения от сухого трения , кроме прочего, то, что тело при наличии только вязкого трения и сколь угодно малой внешней силы обязательно придет в движение, то есть для вязкого трения не существует трения покоя, и наоборот - под действием только вязкого трения тело, вначале двигавшееся, никогда (в рамках макроскопического приближения, пренебрегающего броуновским движением) полностью не остановится, хотя движение и будет бесконечно замедляться.

Вязкость газов

Вязкость газов (явление внутреннего трения) - это появление сил трения между слоями газа , движущимися друг относительно друга параллельно и с разными по величине скоростями. Вязкость газов увеличивается с ростом температуры

Взаимодействие двух слоев газа рассматривается как процесс, в ходе которого от одного слоя к другому передается импульс. Сила трения на единицу площади между двумя слоями газа, равная импульсу, передаваемому за секунду от слоя к слою через единицу площади, определяется законом Ньютона:


τ=-η dν / dz

где:
dν / dz - градиент скорости в направлении перпендикулярном направлению движения слоев газа.
Знак минус указывает, что импульс переносится в направлении убывания скорости.
η - динамическая вязкость.


η= 1 / 3 ρ(ν) λ, где:

ρ - плотность газа,
(ν) - средняя арифметическая скорость молекул
λ - средняя длина свободного пробега молекул.

Вязкость некоторых газов (при 0°C)

Вязкость жидкости

Вязкость жидкости - это свойство, проявляющееся только при движении жидкости, и не влияющее на покоящиеся жидкости. Вязкое трение в жидкостях подчиняется закону трения, принципиально отличному от закона трения твёрдых тел, т.к. зависит от площади трения и скорости движения жидкости.
Вязкость – свойство жидкости оказывать сопротивление относительному сдвигу ее слоев. Вязкость проявляется в том, что при относительном перемещении слоев жидкости на поверхностях их соприкосновения возникают силы сопротивления сдвигу, называемые силами внутреннего трения, или силами вязкости. Если рассмотреть то, как распределяются скорости различных слоёв жидкости по сечению потока, то можно легко заметить, что чем дальше от стенок потока, тем скорость движения частиц больше. У стенок потока скорость движения жидкости равна нулю. Иллюстрацией этого является рисунок, так называемой, струйной модели потока.

Медленно движущийся слой жидкости «тормозит» соседний слой жидкости, движущийся быстрее, и наоборот, слой, движущийся с большей скоростью, увлекает (тянет) за собой слой, движущийся с меньшей скоростью. Силы внутреннего трения появляются вследствие наличия межмолекулярных связей между движущимися слоями. Если между соседними слоями жидкости выделить некоторую площадку S , то согласно гипотезе Ньютона:

F=μ S (du / dy),
  • μ - коэффициент вязкого трения;
  • S – площадь трения;
  • du/dy - градиент скорости

Величина μ в этом выражении является динамическим коэффициентом вязкости , равным:

μ= F / S 1 / du / dy , μ=τ 1 / du / dy ,
  • τ – касательное напряжение в жидкости (зависит от рода жидкости).

Физический смысл коэффициента вязкого трения - число, равное силе трения, развивающейся на единичной поверхности при единичном градиенте скорости.

На практике чаще используется кинематический коэффициент вязкости , названный так потому, что в его размерности отсутствует обозначение силы. Этот коэффициент представляет собой отношение динамического коэффициента вязкости жидкости к её плотности:

ν= μ / ρ ,

Единицы измерения коэффициента вязкого трения:

  • Н·с/м 2 ;
  • кГс·с/м 2
  • Пз (Пуазейль) 1(Пз)=0,1(Н·с/м 2).

Анализ свойства вязкости жидкости

Для капельных жидкостей вязкость зависит от температуры t и давления Р , однако последняя зависимость проявляется только при больших изменениях давления, порядка нескольких десятков МПа.

Зависимость коэффициента динамической вязкости от температуры выражается формулой вида:

μ t =μ 0 e -k t (T-T 0) ,
  • μ t - коэффициент динамической вязкости при заданной температуре;
  • μ 0 - коэффициент динамической вязкости при известной температуре;
  • Т - заданная температура;
  • Т 0 - температура, при которой измерено значение μ 0 ;
  • e

Зависимость относительного коэффициента динамической вязкости от давления описывается формулой:

μ р =μ 0 e -k р (Р-Р 0) ,
  • μ Р - коэффициент динамической вязкости при заданном давлении,
  • μ 0 - коэффициент динамической вязкости при известном давлении (чаще всего при нормальных условиях),
  • Р - заданное давление,;
  • Р 0 - давление, при которой измерено значение μ 0 ;
  • e – основание натурального логарифма равное 2,718282.

Влияние давления на вязкость жидкости проявляется только при высоких давлениях.

Ньютоновские и неньютоновские жидкости

Ньютоновскими называют жидкости, для которых вязкость не зависит от скорости деформации. В уравнении Навье - Стокса для ньютоновской жидкости имеет место аналогичный вышеприведённому закон вязкости (по сути, обобщение закона Ньютона, или закон Навье).

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВНУТРЕННЕГО ТРЕНИЯ

Маловязких жидкостей

Определение вязкости

Примеры проявления вязкости жидкости

Идеальная жидкость, т.е. жидкость без трения, является абстракцией. Всем реальным жидкостям или газам в большей или меньшей степени присуща вязкость, или внутреннее трение. Вязкость проявляется в том, что возникшее в жидкости или газе движение после прекращения действия причин, его вызвавших, постепенно прекращается.

Рассмотрим также следующие примеры, в которых проявляется вязкость жидкости. Так, согласно закону Бернулли для идеальной жидкости, давление в трубе постоянно, если ее поперечное сечение и высота не меняются. Однако, как известно, давление вдоль такой трубы равномерно падает, как показано на рис. 1.

Рис. 1. Падение давления в трубе с движущейся жидкостью.

Это явление объясняется наличием у жидкости внутреннего трения и сопровождается переходом части ее механической энергии во внутреннюю.

При ламинарном течении жидкости по трубе (рис. 2) скорость слоев непрерывно меняется от максимальной (по оси трубы) до нуля (у стенок).

С механической точки зрения любой из слоев тормозит движение соседнего слоя, расположенного ближе к оси трубы (движущегося быстрее), и оказывает ускоряющее действие на слой, расположенный дальше от оси (движущийся медленнее).

Рис. 2. Распределение скорости в поперечном сечении потока

жидкости в трубе круглого сечения (ламинарное течение).

Сила вязкого трения

Для выяснения закономерностей, которым подчиняются силы внутреннего трения, рассмотрим следующий опыт. В жидкость погружены две параллельные друг другу пластины (рис. 3), линейные размеры которых значительно превосходят расстояние между ними d . Нижняя пластина удерживается на месте, верхняя приводится в движение относительно нижней с некоторой скоростью v 0 .

Рис. 3. Послойное движение вязкой жидкости между пластинками,

имеющими различные скорости движения.

Слой жидкости, прилегающей непосредственно к верхней пластинке, благодаря силам молекулярного сцепления прилипает к ней и движется вместе с пластинкой. Слой жидкости, прилипший к нижней пластинке, остается вместе с ней в покое. Промежуточные слои движутся так, что каждый верхний из них обладает скоростью большей, чем под ним лежащий. Т.о. каждый слой скользит относительно соседних слоев. Поэтому со стороны нижнего слоя на верхний действует сила трения, замедляющая движение второго из них, и, обратно, со стороны верхнего на нижний – ускоряющее движение. Силы, возникающие между слоями жидкости, испытывающими относительное перемещение, называют внутренним трением . Свойства жидкости, связанные с наличием сил внутреннего трения, называют вязкостью .

Опыт дает, что для перемещения верхней пластины с постоянной скоростью v 0 необходимо действовать на нее с вполне определенной силой F . Действие внешней силы F уравновешивается равной ей по величине противоположно направленной силой трения.

Сила внутреннего трения между двумя слоями жидкости может быть вычислена по формуле Ньютона:

, (1)

где h – динамическая вязкость, коэффициент внутреннего трения, s – площадь соприкосновения (в данном случае площадь пластины), Dv/Dz – градиент скорости.

Коэффициент вязкости численно равен силе, действующей на единицу площади слоя, когда на единицу длины, взятой перпендикулярно к слою, скорость меняется на единицу (Dv/Dz= 1)

1. Внутреннее трение (вязкость) жидкости. Уравнение Ньютона.

2. Ньютоновские и неньютоновские жидкости. Кровь.

3. Ламинарное и турбулентное течения, число Рейнольдса.

4. Формула Пуазейля, гидравлическое сопротивление.

5. Распределение давления при течении реальной жидкости по трубам различного сечения.

6. Методы определения вязкости жидкостей.

7. Влияние вязкости на некоторые медицинские процедуры. Ламинарность и турбулентность газового потока при наркозе. Введение жидкостей через капельницу и шприц. Риноманометрия. Фотогемотерапия.

8. Основные понятия и формулы.

9. Задачи.

Гидродинамика - раздел физики, в котором изучают вопросы движения несжимаемых жидкостей и их взаимодействие с окружающими телами.

8.1. Внутреннее трение (вязкость) жидкости. Уравнение Ньютона

В реальной жидкости вследствие взаимного притяжения и теплового движения молекул имеет место внутреннее трение, или вязкость. Рассмотрим это явление на следующем опыте (рис. 8.1).

Рис. 8.1. Течение вязкой жидкости между пластинами

Поместим слой жидкости между двумя параллельными твердыми пластинами. «Нижняя» пластина закреплена. Если двигать «верхнюю» пластину с постоянной скоростью v 1 , то c такой же скоростью будет двигаться самый «верхний» 1-й слой жидкости, который считаем «прилипшим» к верхней пластине. Этот слой влияет на нижележащий непосредственно под ним 2-й слой, заставляя его двигаться со скоростью v 2 , причем v 2 < v 1 . Каждый слой (выделим n слоев) передает движение нижележащему слою с меньшей скоростью. Слой, непосредственно «прилипший» к «нижней» пластине, остается неподвижным.

Слои взаимодействуют друг с другом: n-й слой ускоряет (п+1)-й слой, но замедляет (п-1)-й слой. Таким образом, наблюдается изменение скорости течения жидкости в направлении, перпендикулярном поверхности слоя (ось х). Такое изменение характеризуют производной dv/dx, которую называют градиентом скорости.

Силы, действующие между слоями и направленные по касательной к поверхности слоев, называются силами внутреннего трения или вязкости. Эти силы пропорциональны площади взаимодействующих слоев S и градиенту скорости. Для многих жидкостей силы внутреннего трения подчиняются уравнению Ньютона:

Коэффициент пропорциональности η называют коэффициентом внутреннего трения или динамической вязкостью (размерность η в СИ: Пас).

8.2. Ньютоновские и неньютоновские жидкости.

Кровь

Ньютоновская жидкость

Жидкость, которая подчиняется уравнению Ньютона (8.1), называют ньютоновской. Коэффициент внутреннего трения ньютоновской жидкости зависит от ее строения, температуры и давления, но не зависит от градиента скорости.

Ньютоновская жидкость - жидкость, вязкость которой не зависит от градиента скорости.

Свойствами ньютоновской жидкости обладают большинство жидкостей (вода, растворы, низкомолекулярные органические жидкости) и все газы.

Вязкость определяется с помощью специальных приборов - вискозиметров. Значения коэффициента вязкости η для некоторых жидкостей представлены в таблице.

Значение вязкости крови, представленное в таблице, относится к здоровому человеку в спокойном состоянии. При тяжелой физической работе вязкость крови увеличивается. На величину вязкости крови влияют и некоторые заболевания. Так, при сахарном диабете вязкость крови увеличивается до 23?10 -3 Пас, а при туберкулезе уменьшается до 1*10 -3 Пас. Вязкость сказывается на таком клиническом параметре, как скорость оседания эритроцитов (СОЭ).

Неньютоновская жидкость

Неньютоновская жидкость - жидкость, вязкость которой зависит от градиента скорости.

Свойствами неньютоновской жидкости обладают структурированные дисперсные системы (суспензии, эмульсии), растворы и расплавы некоторых полимеров, многие органические жидкости и др.

При прочих равных условиях вязкость таких жидкостей значительно больше, чем у ньютоновских жидкостей. Это связано с тем, что благодаря сцеплению молекул или частиц в неньютоновской жидкости образуются пространственные структуры, на разрушение которых затрачивается дополнительная энергия.

Кровь

Цельная кровь (суспензия эритроцитов в белковом растворе - плазме) является неньютоновской жидкостью вследствие агрегации эритроцитов.

Эритроцит в норме имеет форму двояковогнутого диска диаметром около 8 мкм. Он может существенно менять свою форму, например при различной осмолярности среды (рис. 8.2).

В неподвижной крови эритроциты агрегируют, образуя так называемые «монетные столбики», состоящие из 6-8 эритроцитов. Электронно-микроскопическое исследование тончайших срезов монетных столбиков выявило параллельность поверхностей прилежащих эритроцитов и постоянное межэритроцитарное расстояние при агрегации (рис. 8.3).

На рисунке 8.4 показана (зарисовка) агрегация цельной крови во влажных мазках, которая представляет собой большие конгломераты, состоящие из многих монетных столбиков. При перемешивании крови агрегаты разрушаются, а после прекращения перемешивания вновь восстанавливаются.

При протекании крови по капиллярам агрегаты эритроцитов распадаются и вязкость падает.

Вживление специальных прозрачных окошек в кожные складки позволило сфотографировать течение крови в капиллярах. На рисунке 8.5, выполненном по такой фотографии, отчетливо видна деформация кровяных клеток.

Рис. 8.2. Усредненное поперечное сечение эритроцита при различной осмолярности среды

Рис. 8.3. Схема электроннограммы агрегата из нормальных эритроцитов

Рис. 8.4. Агрегация цельной крови

Рис. 8.5. Деформация эритроцитов в капиллярах

Деформируясь, эритроциты могут продвигаться один за другим в капиллярах диаметром всего 3 мкм. Именно в таких тонких капиллярных сосудах и происходит газообмен между кровью и тканями.

Вблизи стенки капилляра образуется очень тонкий слой плазмы, который играет роль смазки. Благодаря этому сопротивление движению эритроцитов уменьшается.

8.3. Ламинарное и турбулентное течения, число Рейнольдса

В жидкости течение может быть ламинарным или турбулентным. На рисунке 8.6 это показано для одной окрашенной струи жидкости, текущей в другой.

В случае (а) струя окрашенной жидкости сохраняет неизменную форму и не смешивается с остальной жидкостью. В случае (б) окрашенная струя разрывается случайными завихрениями, картина которых меняется с течением времени. К турбулентному течению понятие «трубка тока» неприменимо.

Рис. 8.6. Ламинарное (а) и турбулентное (б) течения струи жидкости

Ламинарное (слоистое) течение - такое течение, при котором слои жидкости текут, не перемешиваясь, скользя друг относительно друга. Ламинарное течение является стационарным - скорость течения в каждой точке пространства остается постоянной.

Рассмотрим ламинарное течение ньютоновской жидкости в трубе радиуса R и длины L, давления на концах которой постоянны (Р 1 и Р 2). Выделим цилиндрическую трубку тока радиуса r (рис. 8.7).

На жидкость внутри этой трубки действуют сила давления F д = πг 2 (Р 1 - Р 2) и сила вязкого трения F тр = 2πrLηdv/dr (2πrL - пло-

Рис. 8.7. Трубка тока и действующая на нее сила трения

щадь боковой поверхности). Так как течение стационарное, сумма этих сил равна нулю:

В соответствии с приведенным выражением имеет место параболическая зависимость скорости v слоев жидкости от расстояния от них до оси трубы r (огибающая всех векторов скорости есть парабола) (рис. 8.8).

Наибольшую скорость имеет слой, текущий вдоль оси трубы (r = 0), слой, «прилипший» к стенке (r = R), неподвижен.

Рис. 8.8. Скорости слоев текущей через трубку жидкости распределены по параболе

Турбулентное (вихревое) течение - такое течение, при котором скорости частиц жидкости в каждой точке беспорядочно меняются. Такое движение сопровождается появлением звука. Турбулентное течение - это хаотическое, крайне нерегулярное, неупорядоченное течение жидкости. Элементы жидкости совершают движение по сложным неупорядоченным траекториям, что приводит к перемешиванию слоев и образованию местных завихрений.

Структура турбулентного течения представляет собой нестационарную совокупность очень большого числа малых вихрей, наложенных на основное «среднее течение».

При этом говорить о течении в ту или иную сторону можно только в среднем за какой-то промежуток времени.

Турбулентное течение связано с дополнительной затратой энергии при движении жидкости: часть энергии расходуется на беспорядочное движение, направление которого отличается от основного направления потока, что в случае крови приводит к дополнительной работе сердца. Шум, возникающий при турбулентном течении крови, может быть использован для диагностирования заболевания. Этот шум прослушивается, например, на плечевой артерии при измерении давления крови.

Турбулентное движение крови может возникнуть вследствие неравномерного сужения просвета сосуда (или локального выпирания). Турбулентное течение создает условия для оседания тромбоцитов и образования агрегатов. Этот процесс часто является пусковым

в формировании тромба. Кроме того, если тромб слабо связан со стенкой сосуда, то под действием резкого перепада давления вдоль него вследствие турбулентности он может начать двигаться.

Число Рейнольдса

Понятия ламинарности и турбулентности применимы как к течению жидкости по трубам, так и к обтеканию ею различных тел. В обоих случаях характер течения зависит от скорости течения, свойств жидкости и характерного линейного размера трубы или обтекаемого тела.

Английский физик и инженер Осборн Рейнольдс (1842-1912) составил безразмерную комбинацию, величина которой и определяет характер течения. Впоследствии эта комбинация была названа числом Рейнольдса (Re):

Число Рейнольдса используют при моделировании гидро- и аэродинамических систем, в частности кровеносной системы. Модель должна иметь такое же число Рейнольдса, как и сам объект, в противном случае соответствия между ними не будет.

Важным свойством турбулентного течения (по сравнению с ламинарным) является высокое сопротивление потоку. Если бы удалось «погасить» турбулентность, то удалось бы достичь огромной экономии мощности двигателей кораблей, подводных лодок, самолетов.

8.4. Формула Пуазейля, гидравлическое сопротивление

Рассмотрим, от каких факторов зависит объем жидкости, протекающей по горизонтальной трубе.

Формула Пуазейля

При ламинарном течении жидкости по трубе радиуса R и длины L объем Q жидкости, протекающей через горизонтальную трубу за одну секунду, можно вычислить следующим образом. Выделим тонкий цилиндрический слой радиуса r и толщины dr (рис. 8.9).

Рис. 8.9. Сечение трубы с выделенным слоем жидкости

Площадь его поперечного сечения равна dS = 2πrdr. Так как выделен тонкий слой, жидкость в нем перемещается с одинаковой скоростью v. За одну секунду слой перенесет объем жидкости

Подставив сюда формулу для скорости цилиндрического слоя жидкости (8.4), получим

Это соотношение справедливо для ламинарного течения ньютоновской жидкости.

Формулу Пуазейля можно записать в виде, справедливом для труб переменного сечения. Заменим выражение (Р 1 - Р 2)/L на градиент давления dP/d/, тогда получим

Как видно из (8.8), при заданных внешних условиях объем жидкости, протекающей по трубе, пропорционален четвертой степени ее радиуса. Это очень сильная зависимость. Так, например, если при атеросклерозе радиус сосудов уменьшится в 2 раза, то для поддержания нормального кровотока перепад давлений нужно увеличить в 16 раз, что практически невозможно. В результате возникает кислородное голодание соответствующих тканей. Этим объясняется возникновение «грудной жабы». Облегчения можно достичь, вводя лекарственное вещество, которое расслабляет мышцы артериальных стенок и позволяет увеличить просвет сосуда и, следовательно, поток крови.

Поток крови, проходящей через сосуды, регулируется специальными мышцами, окружающими сосуд. При их сокращении просвет сосуда уменьшается и соответственно убывает поток крови. Таким образом, незначительным сокращением этих мышц очень точно контролируется поступление крови в ткани.

В организме путем изменения радиуса сосудов (сужения или расширения) за счет изменения объемной скорости кровотока регулируется кровоснабжение тканей, теплообмен с окружающей средой.

Причины движения крови по сосудам

Главная движущая сила кровотока - разность давлений в начале и в конце сосудистой системы: в большом круге кровообращения - разность давлений в аорте и правом предсердии, в малом круге - в легочной артерии и левом предсердии.

Дополнителные факторы, способствующие движению крови по венам в сторону сердца:

1) полулунные клапаны вен конечностей, которые открываются под напором крови только в сторону сердца;

2) присасывающее действие грудной клетки, связанное с отрицательным давлением в ней при вдохе;

3) сокращение мышц конечностей, например, при хотьбе. При этом происходит надавливание на стенки вен, и кровь, благодаря клапанам и присасывающему действию грудной клетки при вдохе, выжимается в участки, расположенные ближе к сердцу.

Гидравлическое сопротивление

Проведем аналогию между формулой Пуазейля и формулой закона Ома для участка цепи тока: I = ΔU /R. Для этого перепишем формулу (8.8) в следующем виде: Q = (P 1 - Р 2)/. Если сравнить эту формулу с законом Ома для электрического тока, то объем жидкости, протекающей через сечение трубы за одну секунду, соответствует силе тока; разность давлений на концах трубы соответствует разности потенциалов; а величина 8ηL/(πR 4) соответствует электрическому сопротивлению. Ее называют гидравлическим сопротивлением:

Гидравлическое сопротивление трубы прямо пропорционально ее длине и обратно пропорционально четвертой степени радиуса.

Если изменением кинетической энергии жидкости на некотором участке можно пренебречь, то рассмотренная аналогия применима и к потоку переменного сечения:

гидравлическим сопротивлением участка называется отношение перепада давлений к объему жидкости, протекающему за 1 секунду:

Наличие гидравлического сопротивления связано с преодолением сил внутреннего трения.

Законы гидродинамики значительно сложнее законов постоянного тока, поэтому и законы соединения труб (кровеносных сосудов) сложнее законов соединения проводников. Так, например, места резкого сужения потока (даже при небольшой длине) обладают большим собственным гидравлическим сопротивлением. Этим и объясняется значительное увеличение гидравлического сопротивления кровеносного сосуда при образовании небольшой бляшки.

Наличие собственного сопротивления у мест резкого сужения потока необходимо учитывать при расчете сопротивления участка, состоящего

Рис. 8.10. Трубы, соединенные последовательно (а) и параллельно (б)

из труб различного диаметра. На рис. 8.10,а показано последовательное сопротивление трех труб. Места сужения обладают собственным сопротивлением Х 12 и Х 23 . Поэтому сопротивление участка равно

Электрический аналог (8.13) формулы для расчета гидродинамического сопротивления параллельного соединения (рис 8.10, б) также требует учета сопротивлений мест соединения труб.

8.5. Распределение давления при течении реальной жидкости по трубам различного сечения

При течении по горизонтальной трубе реальной жидкости работа внешних сил расходуется на преодоление внутреннего трения. Поэтому статическое давление вдоль трубы постепенно падает. Этот эффект может быть продемонстрирован на простом опыте. Установим в разных местах горизонтальной трубы, по которой течет вязкая жидкость, манометрические трубки (рис. 8.11).

Рис. 8.11. Падение давления вязкой жидкости в трубах различного сечения

Из рисунка видно, что при постоянном сечении трубы давление падает пропорционально длине. При этом скорость падения давления (dP/dl ) увеличивается при уменьшении сечения трубы. Это объясняется ростом гидравлического сопротивления при уменьшении радиуса.

В кровеносной системе человека на капилляры приходится до 70 % падения давления.

8.6. Методы определения вязкости жидкостей

Совокупность методов измерения вязкости жидкости называется вискозиметрией. Прибор для измерения вязкости называется вискозиметром. В зависимости от метода измерения вязкости используют следующие типы вискозиметров.

1. Капиллярный вискозиметр Оствальда основан на использовании формулы Пуазейля. Вязкость определяется по результату измерения времени протекания через капилляр жидкости известной массы под действием силы тяжести при определенном перепаде давлений.

2. Медицинский вискозиметр Гесса с двумя капиллярами, в которых движутся две жидкости (например, дистиллированная вода и кровь). Вязкость одной жидкости должна быть известна. Учитывая, что перемещение жидкостей за одно и то же время обратно пропорционально их вязкости, вычисляют вязкость второй жидкости.

3. Вискозиметр, основанный на методе Стокса, согласно которому при движении шарика радиуса R в жидкости с вязкостью η при небольшой скорости v сила сопротивления пропорциональна вязкости этой жидкости: F = 6πηRv (формула Стокса). Эритроциты перемещаются в вязкой жидкости - плазме крови. Так как эритроциты имеют дискообразную форму и оседают в вязкой жидкости, то скорость их оседания (СОЭ) можно определить приближенно по формуле Стокса. О скорости оседания судят по количеству плазмы над осевшими эритроцитами. В норме скорость оседания эритроцитов равна: 7-12 мм/ч для женщин и 3-9 мм/ч для мужчин.

4. Вискозиметр ротационный (рис. 8.12) состоит из двух коаксиальных (соосных) цилиндров. Радиус внутреннего цилиндра - R, радиус внешнего цилиндра - R+ΔR (ΔR << R). Пространство между цилин-

Рис. 8.12. Ротационный вискозиметр (сечения вдоль и перпендикулярно оси)

драми заполняют исследуемой жидкостью до некоторой высоты h. Затем внутренний цилиндр приводят во вращение, прикладывая определенный момент сил М, и измеряют установившуюся частоту вращения ν.

Вязкость жидкости вычисляют по формуле

Применяя ротационный вискозиметр, можно измерять вязкость при разных угловых скоростях вращения ротора. Данный метод позволяет установить зависимость между вязкостью и градиентом скорости, что важно для неньютоновских жидкостей.

8.7. Влияние вязкости на некоторые медицинские

процедуры

Наркоз

В некоторых медицинских мероприятиях используется наркоз. При этом необходимо по возможности уменьшить усилия, затрачиваемые больным на дыхание через эндотрахеальные и другие дыхательные трубки, посредством которых подается дыхательная смесь из аппаратов для наркоза (рис. 8.13).

Для обеспечения плавного газового потока используются плавно изогнутые соединительные трубки. Неровности внутренних стенок трубки, резкие изгибы и изменения внутреннего диаметра трубок

Рис. 8.13. Дыхание больного через эндотрахеальную трубку

Рис. 8.14. Возникновение турбулентности газового потока в трубке с резкими неоднородностями по сечению

и соединений часто являются причинами перехода ламинарного потока в турбулентный (рис. 8.14), что затрудняет процесс дыхания у больного.

На рисунке 8.15 приведен рентгеновский снимок головы больного, показывающий, что эндотрахеальная трубка перегнулась в глотке. В данном случае у больного обязательно возникнут затруднения дыхания.

Введение жидкостей через шприц и капельницу

Шприц - очень простой прибор (рис. 8.16), который используют для инъекций. И тем не менее при описании его работы часто допускается ошибка, связанная с нахождением перепада давлений (ΔР) на игле, которая приводит к неверному результату. Считают, что

Рис. 8.15. Рентгеновский снимок, на котором виден перегиб дыхательной трубки

Рис. 8.16. Работа шприца

ΔP = F/S, где F - сила, действующая на поршень, а S - его площадь. При этом исходят из следующих соображений: поршень движется медленно и динамическим давлением жидкости в цилиндре можно

пренебречь. Это неверно - на входе в иглу линии тока сгущаются и скорость движения жидкости резко возрастает.

Строгий расчет (см. задачу 8.12) приводит к следующему результату. Перепад давления на игле (ΔР) является решением квадратного уравнения

Значения всех величин подставляются в СИ.

Ниже приводятся результаты расчетов для двух игл длины 4 см, диаметры которых отличаются в 1,5 раза.

Из результатов, представленных в нижней таблице, видно, что АР вовсе не равно F/S! При этом увеличение диаметра иглы в 1,5 раза приводит к увеличению объемной скорости всего в 3,5 раза, а не в 5 раз (1,5 4 = 5,06), как этого можно было ожидать. Ламинарный характер течения имеет место в обоих случаях.

Другим прибором для внутривенного вливания является капельница (рис. 8.17), которая позволяет вводить жидкость самотеком за счет разности давлений, создаваемой при подъеме камеры с препаратом на определенную высоту (~60 см).

Формулы 8.14, 8.15 применимы и здесь, если заменить величину F/S на гидростатическое давление столба жидкости pgh. При этом S - площадь сечения трубки, а u - скорость движения жидкости в ней. Ниже приведены результаты расчетов для h = 60 см.

Полученные значения являются правильными, но не соответствуют тому, что происходит на самом деле. В данном случае получается завышенное значение для объемной скорости ввода препарата - 0,827 см 3 /с. Реальная скорость Q = 0,278 см 3 /с (из расчета 500 мл за 30 минут). Расхождение получается из-за того, что не учтено гидравлическое сопротивление, создаваемое устройством, пережимающим трубку.

Риноманометрия

Полноценное носовое дыхание является необходимой предпосылкой для нормальной функции слуховой трубы, которая во многом зависит от степени аэрации носоглотки и правильного прохождения воздушных потоков в полости носа. Причиной нарушения носового дыхания часто являются некоторые врожденные патологии, например расщелина верхней губы и неба. Часто при лечении этой патологии

Рис. 8.17. Введение препарата через капельницу

используются хирургические методы, например реконструктивная ринохейлопластика (ринопластика - операции восстановления носа). Для объективной характеристики результатов оперативного вмешательства используется риноманометрия - метод определения объема носового дыхания и сопротивления. Скорость воздушного потока характеризуется формулой Пуазейля, при этом учитывается градиент давления, обусловленный изменением давления в носоглоточном пространстве; диаметр и длина носовой полости; характеристики воздушного потока в носоглотке (ламинарность или турбулентность). Данный метод реализуется с помощью прибора - риноманометра, который позволяет регистрировать давление в одной половине носа, пока пациент дышит через другую. Это осуществляется с помощью катетера, который специально крепится в носу. Компьютерная схема риноманометра позволяет автоматически измерить общий объем и сопротивление воздуха на вдохе и выдохе, раздельно проанализировать поток и сопротивление воздуха в каждой половине носа и рассчитать их соотношение. Это позволяет определить носовое дыхание до и после операции и оценить степень восстановления носового дыхания.

Фотогемотерапия

При заболеваниях, сопровождающихся повышением вязкости крови, для уменьшения вязкости крови применяется метод фотогемотерапии. Он заключается в том, что у больного берут небольшое количество крови (примерно 2 мл/кг веса), подвергают ее УФ-облучению и вводят обратно в кровеносное русло. Примерно через 5 мин после введения больным 100-200 мл облученной крови наблюдается значительное снижение вязкости во всем объеме (около 5 л) циркулирующей крови. Исследования зависимости вязкости от скорости движения крови показали, что при фотогемотерапии вязкость сильнее всего снижается (примерно на 30 %) в медленно движущейся крови и совсем не меняется в быстро движущейся крови. УФ-облучение вызывает снижение способности эритроцитов к агрегации и увеличивает деформируемость эритроцитов. Помимо этого происходит снижение образования тромбов. Все эти явления приводят к значительному улучшению как макро-, так и микроциркуляции крови.

8.8. Основные понятия и формулы

Окончание таблицы

8.9. Задачи

1. Вывести формулу для определения вязкости ротационным вискозиметром. Дано: R, ΔR, h, ν, M.

2. Определить время протекания крови через капилляр вискозиметра, если вода протекает через него за 10 с. Объемы воды и крови одинаковы. Плотность воды и крови равны p 1 = 1 г/см 3 , ρ 2 = 1,06 г/см 3 . Вязкость крови относительно воды равна 5 (η 2 /η 1 = 5).

3. Допустим, что в двух кровеносных сосудах градиент давления одинаков, а поток крови (объемный расход) во втором сосуде на 80% меньше, чем в первом. Найти отношение их диаметров.

4. Какова должна быть разность давлений АР на концах капилляра радиуса r = 1 мм и длины L = 10 см, чтобы за время t = 5 с через него можно было пропустить объем V = 1 см 3 воды (коэффициент вязкости η 1 = 10 -3 Пас) или глицерина (η 2 = 0,85 Пас)?

5. Падение давления в кровеносном сосуде длины L = 55 мм и радиуса r = 1,5 мм равно 365 Па. Определить, сколько миллилитров крови протекает через сосуд за 1 минуту. Коэффициент вязкости крови η = 4,5 мПа-с.

6. При атеросклерозе, вследствие образования бляшек на стенках сосуда, критическое значение числа Рейнольдса может снизиться до 1160. Определить для этого случая скорость, при которой возможен переход ламинарного течения крови в турбулентное в сосуде диаметром 2,5 мм. Плотность крови равна ρ = 1050 кг/м 3 , вязкость крови равна η = 5х10 -3 Пас.

7. Средняя скорость крови в аорте радиусом 1 см равна 30 см/с. Выяснить, является ли данное течение ламинарным? Плотность крови ρ = 1,05х10 3 кг/м 3 .

η = 4х10 -3 Па-с; Rе кр = 2300.

8. При большой физической нагрузке скорость кровотока иногда увеличивается вдвое. Пользуясь данными примера задачи (7), определить характер течения в этом случае.

Решение

Re = 2x1575 = 3150. Течение турбулентное.

Ответ: число Рейнольдса больше критического значения, поэтому течение может стать турбулентным.


10. Определить максимальную массу крови, которая может пройти за 1 с через аорту при сохранении ламинарного характера течения. Диаметр аорты D = 2 см, вязкость крови η = 4x10 -3 Па-с.

11. Определить максимальную объемную скорость протекания жидкости по игле шприца с внутренним диаметром D = 0,3 мм, при которой сохраняется ламинарный характер течения.

12. Найти объемную скорость жидкости в игле шприца. Плотность жидкости - ρ; ее вязкость - η; диаметр и длина иглы D и L соответственно; сила, действующая на поршень, - F; площадь поршня - S.

Интегрируя по r, получим:

Пусть поршень шприца движется под действием силы F со скоростью u. Тогда мощность внешней силы N F = Fu.

Суммарная работа всех сил равна изменению кинетической энергии. Следовательно,

Подставив найденное значение A P во второе уравнение, получим все интересующие нас величины: скорость поршня и, объемную скорость кровотока Q, скорость жидкости в игле v.

Сила сопротивления при движении в вязкой среде

В отличие от сухого вязкое трение характерно тем, что сила вязкого трения обращается в нуль одновременно со скоростью. Поэтому, как бы ни была мала внешняя сила, она может сообщить относительную скорость слоям вязкой среды.

Замечание 1

Следует иметь в виду, что, помимо собственно сил трения, при движении тел в жидкой или газообразной среде возникают так называемые силы сопротивления среды, которые могут быть гораздо значительнее, чем силы трения.

Правила поведения жидкости и газа в отношении трения не различаются. Поэтому все сказанное ниже относится в равной степени и к жидкостям, и к газам.

Сила сопротивления, возникающая при движении тела в вязкой среде обладает определенными свойствами:

  • отсутствует сила трения покоя - например, человек может сдвинуть с места плавающий многотонный корабль, просто потянув за канат;
  • сила сопротивления зависит от формы движущегося тела - корпус подводной лодки, самолёта или ракеты имеет обтекаемую сигарообразную форму --- для уменьшения силы сопротивления, наоборот, при движении полусферического тела вогнутой стороной вперёд сила сопротивления очень велика (пример --- парашют);
  • абсолютная величина силы сопротивления существенно зависит от скорости.

Сила вязкого трения

Изложим закономерности, которым подчиняются силы трения и сопротивления среды совместно, причём условно будем называть суммарную силу силой трения. Вкратце эти закономерности сводятся к следующему - величина силы трения зависит:

  • от формы и размеров тела;
  • состояния его поверхности;
  • скорости по отношению к среде и от свойства среды, называемого вязкостью.

Типичная зависимость силы трения от скорости тела по отношению к среде показана графически на рис. 1.~

Рисунок 1. График зависимости силы трения от скорости по отношению к среде

При малых скоростях движения сила сопротивления прямо пропорциональна скорости и сила трения растет линейно со скоростью:

$F_{mp} =-k_{1} v$ , (1)

где знак «-» означает, что сила трения направлена в сторону, противоположную скорости.

При больших скоростях линейный закон переходит в квадратичный т.е. сила трения начинает расти пропорционально квадрату скорости:

$F_{mp} =-k_{2} v^{2}$ (2)

Например, при падении в воздухе зависимость силы сопротивления от квадрата скорости имеет место уже при скоростях около нескольких метров в секунду.

Величина коэффициентов $k_{1} $ и $k_{2}$ (их можно назвать коэффициентами трения) в сильной степени зависит от формы, и размеров тела, состояния его поверхности и от вязких свойств среды. Например, для глицерина они оказываются гораздо большими, чем для воды. Так, парашютист при затяжном прыжке не набирает скорость безгранично, а с определённого момента начинает падать с установившейся скоростью, при которой сила сопротивления становится равна силе тяжести .

Значение скорости, при которой закон (1) переходит в (2), оказывается зависящим от тех же причин.

Пример 1

Два металлических шарика, одинаковых по размеру и различных по массе, падают без начальной скорости с одной и той же большой высоты. Какой из шариков быстрее упадёт на землю --- лёгкий или тяжёлый?

Дано: $m_{1} $, $m_{2} $, $m_{1} >m_{2} $.

Шарики при падении не набирают скорость безгранично, а с определённого момента начинают падать с установившейся скоростью, при которой сила сопротивления (2) становится равна силе тяжести:

Отсюда установившаяся скорость:

Из полученной формулы следует, что у тяжёлого шарика установившаяся скорость падения больше. Значит, он дольше будет набирать скорость и потому быстрее достигнет земли.

Ответ : Тяжелый шарик быстрее достигнет земли.

Пример 2

Парашютист, летящий до раскрытия парашюта со скоростью $35$ м/с, раскрывает парашют, и его скорость становится равной $8$ м/с. Определите, какой примерно была сила натяжения строп при раскрытии парашюта. Масса парашютиста $65$ кг, ускорение свободного падения $10 \ м/с^2.$ Принять, что $F_{mp}$ пропорциональна $v$.

Дано: $m_{1} =65$кг, $v_{1} =35$м/с, $v_{2} =8$м/с.

Найти: $T$-?

Рисунок 2.

До раскрытия парашюта парашютист имел

постоянную скорость $v_{1} =35$м/с, значит ускорения парашютиста было равно нулю.

После раскрытия парашюта парашютист имел постоянную скорость $v_{2} =8$м/с.

Второй закон Ньютона для этого случая будет выглядеть следующим образом:

Тогда искомая сила натяжения строп будет равна:

$T=mg(1-\frac{v_{2} }{v_{1} })\approx 500$ Н.

Интересно, что абсолютно сухие тела в природе практически не встречаются. При любых условиях содержания техники на поверхности твердого вещества образуются тонкие пленки атмосферных осадков, жиров и т.д. Трение между твердым телом и жидкостью или газом называется вязким или жидким трением.


Где возникает вязкое трение?

Вязкое трение возникает при движении твёрдых тел в жидкой или газообразной среде, или когда сама жидкость или газ текут мимо неподвижных твёрдых тел.


Какова причина вязкого трения?

Причина возникновения вязкого трения - это внутреннее трение.

Если твёрдое тело движется в неподвижной среде, прилипший к нему слой воды или воздуха перемещается вместе с ним. При этом он скользит вдоль соседнего слоя. Возникает сила трения, увлекающая этот слой.

Он приходит в движение и в свою очередь увлекает следующий слой и т. д. Чем дальше от поверхности тела, тем медленнее движутся слои жидкости или газа. Сила трения между слоями тормозит более быстрые слои и, значит, само твёрдое тело. Оно тормозится непосредственно вязким трением. То же самое происходит, когда поток жидкости или газа течёт мимо неподвижного тела.


Интересные особенности вязкого трения!

Налейте в тарелку немного воды и опустите туда щепку. Подуйте на щепку – она поплывёт по воде. И даже если вы подули слабо, щепка всё равно сдвинется с места Главное отличие вязкого трения от сухого состоит в том, что не существует вязкого трения покоя!

Как бы ни мала была сила тяги, действующая на тело, она сразу же вызывает движение тела в жидкости. Чем меньше эта сила, тем медленнее будет плыть тело.

От чего зависит сила трения в жидкости или газе?

Сила трения, испытываемая движущимся телом, например, в жидкости, зависит от скорости движения, от формы и размеров тела и от свойств жидкости.

При малых скоростях движения сила сопротивления прямо пропорциональна скорости движения и линейному размеру тела. Тела испытывают тем большую силу противления, чем более густой (вязкой) будет среда. А жидкости могут быть не вязкие, как вода, или очень вязкие, как мед. У воды вязкость меньше, чем у клея, а у клея – меньше, чем у смолы.

Вязкость зависит от температуры жидкости.
Например, зимой мотор стоявшего на морозе автомобиля приходится разогревать.
Делается это для того, чтобы согреть застывшее масло, залитое в мотор
Вязкость застывшего масла больше, чем у нагретого, и мотор не может быстро вращаться.
Наоборот, вязкость газов с понижением температуры падает.

При увеличении скорости тела меняется сопротивления среды. Оно зависит от характера обтекания движущегося в нем тела. На больших скоростях позади движущегося тела возникает сложное турбулентное течение, образуются причудливые фигуры, кольца и вихри.

Турбулентное сопротивление движению зависит уже от плотности среды, квадрата скорости тела и размеров (в квадрате) тела. Турбулентное сопротивление уменьшается во много раз после придания движущемуся телу обтекаемой формы. Наилучшей для тела, движущегося в толще жидкости или газа, является форма, тупая спереди и острая сзади (например, у дельфинов и китов).

Давным-давно...

На некоторых древних рисунках, найденных в пирамидах, изображены египтяне, подливающие молоко под полозья саней, на которых они волокут каменные глыбы.

В дошедших до нас опорах колодезных воротов времен бронзового века (V век до н. э.) обнаружены следы оливкового масла, которое помогало ослабить трение.


Что же такое "смазка"?

Так говорят о смазке: «идёт как по маслу».

Там, где приходится иметь дело со скольжением сухих поверхностей, их стараются сделать мокрыми, смазать. Втулки колёс мажут дёгтем или тавотом; в подшипники заливают масло, набивают солидол. На электростанциях, есть даже специальная должность маслёнщика, подливающего из маслёнки смазку в трущиеся части. На железной дороге тоже есть смазчики. Благодаря смазке трение уменьшается в 8–10 раз.


Какие натуральные жидкости лучше подходят для смазки?

Это растительные жиры, масло, говяжье или свиное сало, дёготь. Но с развитием техники были найдены другие, более дешёвые смазочные материалы - минеральные масла, получающиеся при переработке нефти.

В качестве современных смазочных веществ можно назвать машинное, авиационное, дизельное масла, тавот, солидол, технический вазелин, автол, нигрол, веретенное масло, ружейное масло.

Выяснилось, что чем массивнее вращающаяся, например, деталь, тем гуще должна быть смазка. Тяжёлые валы гидротурбин смазывают густым тавотом, а ходовые части карманных часов – жидким и прозрачным костяным маслом. Хорошая смазка должна обладать «маслянистостью». Тогда при остановке машины в зазоре между трущимися частями остаётся тончайший слой смазки, и при пуске машины в ход не приходится преодолевать трения покоя между совсем сухими поверхностями. Этим понижает трение и износ трущихся деталей. При работе машины смазка разогревается и частично теряет свои свойства, поэтому для охлаждения смазки применяют специальные приспособления. А еще созданы такие смазочные смеси, которые хорошо работают даже на очень большом морозе.

А вот самую распространенную в природе жидкость - воду редко используют в качестве смазки. Она обладает малой вязкостью и, кроме того, вызывает коррозию многих металлов.


Неосторожность с огнем - главная причина пожара для всех сооружений.
А вот для ветряных мельниц, сейчас практически исчезнувших, одной из основных причин пожара был сильный ветер, так как при сильном ветре у них часто загоралась ось от трения!!!

Если в брезентовый пожарный шланг подавать воду под большим давлением, его может разорвать. А если брезент взять попрочнее? Американские пожарные провели такой эксперимент. Шланг не разорвало, но когда скорость потока воды достигла 100 литров в секунду, то шланг загорелся от трения воды о брезентовые стенки!


Интересно!

Есть жидкость, которая увеличивает трение. Это – гудрон!

При смазывании трущихся поверхностей смазкой сухое трение заменяется вязким и уменьшается.

Жидкости являются смазкой при трении, но при вытаскивании из деревянного изделия, долго находившегося под дождем или в сыром месте, вбитых гвоздей нужно приложить куда больше усилий, чем при вытаскивании из сухой! Дело в том, что промежутки между частичками древесины, набухшей от влаги, увеличиваются, и гвоздь сильнее сжимается волокнами древесины, при этом сила трения увеличивается.

Когда приливная волна движется по океанскому дну, силы трения приводят к замедлению вращения Земли и удлинению суток.

Вязкое трение приводит к потере механической энергии движущегося тела, т.к. тормозит его. Но это не значит, что,например самолет будет лучше» лететь в среде, лишенной вязкого трения. Самолет в таком воздухе вообще не сможет взлететь, т.к. подъемная сила его крыла и сила тяги его воздушного винта будут равны нулю!

Линейная скорость спутника, движущегося в разреженных слоях атмосферы, из-за сопротивления воздуха увеличивается! Парадокс объясняется тем, что уменьшается радиус орбиты и часть потенциальной энергии спутника преобразуется в кинетическую.

Для судна водоизмещением около 35 тыс. т и длиной около 180 м потери на трение о воду при ходе 14 узлов соcтавляют примерно 75 % общей мощности, а остальные 25 % затрачиваются на преодоление волнoвoгo сопротивления. Интересно, что этот последний вид потерь значительно уменьшается при движении тела в подводном положении.

Наша aтмосфера у земной поверхности примерно в 800 раз менее плотна, чем вода, но и она может создать огромное противодейcтвие движению. Так, обычный поезд при скорости 200 км/ч затрачивает на преодоление сопротивления воздуха около 70 % всей мощности. Даже при хорошо обтекаемой форме эта цифра не снижается ниже половины всей мощности.

Уже первые летательныe аппараты отчетливо ощутили гигантскую силу сопротивления воздуха. И с этого момента снижение лобового сопротивления за счет лучшей обтекаемости стало одной из главных проблем развития авиации. Ведь трение о воздух не только поглощает энергию двигателей, но и приводит к опасному перeгреву самолета в плотных слоях атмосферы. Но в то же время набегающий поток служит одним из источников подъемной силы самолетов